Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T05:32:19.842Z Has data issue: false hasContentIssue false

Bolotinaite, ideally (Na7□)(Al6Si6O24)F⋅4H2O, a new sodalite-group mineral from the Eifel palaeovolcanic region, Germany

Published online by Cambridge University Press:  10 August 2022

Nikita V. Chukanov*
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Christof Schäfer
Affiliation:
Gustav Stresemann-Strasse 34, 74257 Untereisesheim, Germany
I.V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygina str. 19, 119991 Moscow, Russia
Roman Yu. Shendrik
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, 1a Favorskii St., Irkutsk, 664033, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Nikita V. Chukanov, Email: chukanov@icp.ac.ru

Abstract

The new sodalite-group mineral bolotinaite, ideally (Na7□)(Al6Si6O24)F⋅4H2O, was discovered in a volcanic ejectum of trachitoid sanidinite collected from the In den Dellen (Zieglowski) pumice quarry, Laach Lake (Laacher See) palaeovolcano, Eifel region, Rhineland-Palatinate, Germany. The associated minerals are sanidine, nepheline, annite and zircon. Bolotinaite occurs as isolated interpenetration prismatic twins on (111) up to 1.3 mm long, complex twins, and rare non-twinned rhombic dodecahedra up to 0.2 mm across. The colour of bolotinaite is pale yellow to pinkish coloured, the streak is white and the lustre is vitreous. Weak orange–yellow fluorescence under longwave ultraviolet radiation (λ = 330 nm) is due to the presence of trace amounts of the S2•– radical anion. Bolotinaite is brittle, with a Mohs’ hardness of 5. No cleavage is observed. The fracture is uneven. D(meas) = 2.27(2) g⋅cm–3, D(calc) = 2.291 g⋅cm–3. Bolotinaite is optically isotropic, with n = 1.488(2) (λ = 589 nm). The chemical composition is (wt.%, electron microprobe, CO2 determined by quantitative IR spectroscopy analysis, H2O calculated from the empirical formula with four H2O molecules per formula unit): Na2O 18.30, K2O 3.87, CaO 0.57, Al2O3 28.85, SiO2 37.97, CO2 1.66, SO3 1.37, F 1.60, Cl 0.57, 2.22, H2O 7.21, –O≡(F,Cl) –0.80, total 101.17. The empirical formula is (Na5.92K0.82Ca0.10H0.08)(Si6.33Al5.67O24)(SO4)0.17F0.84Cl0.16(H2O)3.96(CO2)0.38. A high content of H2O and the presence of CO2 molecules and H+ cations as well as trace amounts of S2•– are confirmed by means of infrared and Raman spectroscopy. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R = 0.0335. Bolotinaite is cubic, space group I$\bar{4}$3m, with a = 9.027(1) Å, V = 735.7(2) Å3 and Z = 1. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.36 (47) (110), 4.502 (10) (200), 3.679 (100) (211), 2.851 (28) (310), 2.603 (29) (222) and 2.126 (18) (330). The mineral is named in honour of the Russian crystallographer and crystal chemist Dr. Nadezhda Borisovna Bolotina (b. 1949).

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Asthagiri, D., Pratt, L.R. and Kress, J.D. (2005) Ab initio molecular dynamics and quasichemical study of H+(aq). Proceedings of the National Academy of Sciences of the United States of America, 102, 67046708.CrossRefGoogle ScholarPubMed
Balassone, G., Bellatreccia, F., Mormone, A., Biagioni, C., Pasero, M., Petti, C., Mondillo, N. and Fameli, G. (2012) Sodalite-group minerals from the Somma Vesuvius volcanic complex, Italy: a case study of K-feldspar-rich xenoliths. Mineralogical Magazine, 76, 191212. https://doi.org/10.1180/minmag.2012.076.1.191CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Piccinini, M., Cavallo, A. and Brilli, M. (2009) H2O and CO2 in minerals of the haüyne-sodalite group: an FTIR spectroscopy study, Mineralogical Magazine, 73, 399413. https://doi.org/10.1180/minmag.2009.073.3.399.CrossRefGoogle Scholar
Bokiy, G.B. and Borutskiy, B.E. (editors) (2003) Minerals. Vol. V(2): Framework Silicates. Moscow, Nauka, 379 pp. [in Russian].Google Scholar
Bonaccorsi, E. and Merlino, S. (2005) Modular microporous minerals: Cancrinite-davyne group and C–S–H Phases. Pp. 241290 in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy & Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Bonaccorsi, E. and Orlandi, P. (2003) Marinellite, a new feldspathoid of the cancrinite-sodalite group, European Journal of Mineralogy, 15, 10191027. https://doi.org/10.1127/0935-1221/2003/0015-1019CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc. Russ. Mineral. Soc.), 146, 104107 [in Russian].Google Scholar
Burragato, F., Maras, A. and Rossi, A. (1982) The sodalite group minerals in the volcanic areas of Latium. Neues Jahrbuch Monatsheft, 1982, 433445Google Scholar
Cámara, F., Bellatreccia, F., Della Ventura, G. and Mottana, A. (2005) Farneseite, a new mineral of the cancrinite-sodalite group with a 14-layer stacking sequence: occurrence and crystal structure. European Journal of Mineralogy, 17, 839846. https://doi.org/10.1127/0935-1221/2005/0017-0839CrossRefGoogle Scholar
Cámara, F., Bellatreccia, F., Della Ventura, G., Mottana, A., Bindi, L., Gunter, M.E. and Sebastiani, M. (2010) Fantappièite, a new mineral of the cancrinite-sodalite group with a 33-layer stacking sequence: Occurrence and crystal structure. American Mineralogist, 95, 472480. https://doi.org/10.2138/am.2010.3279CrossRefGoogle Scholar
Cámara, F., Bellatreccia, F., Della Ventura, G., Gunter, M.E., Sebastiani, M. and Cavallo, A. (2012) Kircherite, a new mineral of the cancrinite-sodalite group with a 36-layer stacking sequence: Occurrence and crystal structure, American Mineralogist, 97, 14941504. https://doi.org/10.2138/am.2012.4033CrossRefGoogle Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London. 1716 pp.CrossRefGoogle Scholar
Chukanov, N.V., Vigasina, M.F., Zubkova, N.V., Pekov, I.V., Schäfer, C., Kasatkin, A.V., Yapaskurt, V.O. and Pushcharovsky D.Yu. (2020a) Extra-framework content in sodalite-group minerals: Complexity and new aspects of its study using infrared and Raman spectroscopy. Minerals, 10, 363. https://doi.org/10.3390/min10040363CrossRefGoogle Scholar
Chukanov, N.V., Sapozhnikov, A.N., Shendrik, R.Yu., Vigasina, M.F. and Steudel, R. (2020b) Spectroscopic and crystal-chemical features of sodalite-group minerals from gem lazurite deposits. Minerals, 10, 1042. https://doi.org/10.3390/min10111042CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Pekov, I.V., Shendrik, R.Y., Varlamov, D.A., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Yapaskurt, V.O. and Pushcharovsky, D.Y. (2021) Sapozhnikovite, IMA 2021-030. CNMNC Newsletter 62. Mineralogical Magazine, 85. https://doi.org/10.1180/mgm.2021.62Google Scholar
Chukanov, N.V., Vigasina, M.F., Rastsvetaeva, R.K., Aksenov, S.M., Mikhailova, Ju.A. and Pekov, I.V. (2022a) The evidence of hydrated proton in eudialyte-group minerals based on Raman spectroscopy data. Journal of Raman Spectroscopy, 53, https://doi.org/10.1002/jrs.6343.CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Schäfer, C., Pekov, I.V., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Yapaskurt, V.O. and Pushcharovsky, D.Y. (2022b) Bolotinaite, IMA 2021-088. CNMNC Newsletter 65. Mineralogical Magazine, 86, 354358.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1963) Rock-forming Minerals. Vol. 4: Framework Silicates. Longmans, London, pp. 289302.Google Scholar
Della Ventura, G., Bellatreccia, F. and Bonaccorsi, E. (2005) CO2 in minerals of the cancrinite-sodalite group: pitiglianoite, European Journal of Mineralogy, 17, 847851. https://doi.org/10.1127/0935-1221/2005/0017-0847CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Parodi, G.C., Cámara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24), American Mineralogist, 92, 713721. https://doi.org/10.2138/am.2007.2197CrossRefGoogle Scholar
Frechen, J. (1947) Vorgänge der Sanidinit-Bildung im Laacher Seegebiet. Fortschritte der Mineralogie, 26, 147166 [in German].Google Scholar
Frechen, J. (1976) Siebengebirge am Rhein, Laacher Vulkangebiet, Maargebiet der Westeifel. Sammlung geologischer Führer, 56, 3. Auflage. Stuttgart, Schweitzerbart, 209 p. [in German].Google Scholar
Hassan, I. and Grundy, H.D. (1984) The crystal structures of sodalite-group minerals. Acta Crystallographica, B40, 613.CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1989) The structure of nosean, ideally Na8[Al6Si6O24]SO4⋅H2O. The Canadian Mineralogist, 27, 165172.Google Scholar
Henderson, W.A. Jr, Richards, R.P. and Howard, D.G. (2000) Elongated twins of sodalite and other isometric minerals.Mineralogical Record, 2000, 31, 141152.Google Scholar
Hogarth, D.D. and Griffin, W.L. (1976) New data on lazurite. Lithos, 9, 3954.CrossRefGoogle Scholar
Kuribayashi, T., Aoki, S. and Nagase, T. (2018) Thermal behavior of modulated haüyne from Eifel, Germany: In situ high–temperature single–crystal X–ray diffraction study. Journal of Mineralogical and Petrological Sciences, 113, 5155.CrossRefGoogle Scholar
Löhn, J. and Schulz, H. (1968) Strukturverfeinerung am gestörten Haüyn, (Na5K1Ca2)Al6Si6O24(SO4)1.5, Neues Jahrbuch für Mineralogie, Abhandlungen, 109, 201210 [in German].Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 41, 9891002.Google Scholar
Nishanbaev, T.P., Rassomahin, M.A., Blinov, I.A. and Popova, V.I. (2016) Minerals of sodalite-cancrinite pegmatites from the Vishnevogorsk miaskite massif, South Urals. Mineralogy, 3, 4052 [in Russian].Google Scholar
Ostroumov, E., Fritsch, E., Faulques, E. and Chauvet, O. (2002) Etude spectrometrique de la lazurite du Pamir, Tajikistan. The Canadian Mineralogost, 40, 885 893 [in French].CrossRefGoogle Scholar
Peterson, R.C. (1983) The structure of hackmanite, a variety of sodalite, from Mont St-Hilaire, Quebec. The Canadian Mineralogist, 21, 549552.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie – Crystalline Materials, 229, 345352.CrossRefGoogle Scholar
Rigaku Oxford Diffraction (2018) CrysAlisPro Software System, v. 1.171.39.46, Rigaku Corporation, Oxford, UK.Google Scholar
Sapozhnikov, A.N. (1990) Indexing of additional reflections on the X-ray Debye diffraction patterns of lazurite concerning the study of modulation of its structure. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva (Proceedings of the Soviet Mineralogical Society), 119(1), 110116 [in Russian with English abstract].Google Scholar
Sapozhnikov, A.N., Tauson, V.L., Lipko, S.V., Shendrik, R.Yu., Levitskii, V.I., Suvorova, L.F., Chukanov, N.V. and Vigasina, M.F. (2021a) On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)nH2O. American Mineralogist, 106. https://doi.org/10.2138/am-2020-7317.CrossRefGoogle Scholar
Sapozhnikov, A.N., Chukanov, N.V., Shendrik, R.Yu., Vigasina, M.F., Tauson, V.L., Lipko, S.V., Belakovskiy, D.I., Levitskii, V.I., Suvorova, L.F. and Ivanova, L.A. (2021b) Lazurite: confirmation of the status of mineral species with the formula Na7Ca(Al6Si6O24)(SO4)S3•–⋅H2O and new data. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 150(4), 92 102. https://doi.org/10.31857/S0869605521040055 [in Russian with English abstract].Google Scholar
Steudel, R. and Chivers, T. (2019) The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chemical Society Reviews, 48, 32793319 and 4338.CrossRefGoogle Scholar
STOE (2003) WinXPow Version 2.08. STOE & Cie GmbH, Darmstadt, Germany.Google Scholar
Taylor, D. (1967) The sodalite group of minerals. Contributions to Mineralogy and Petrology, 16, 172188.CrossRefGoogle Scholar
Vyas, N.K., Sakore, T.D. and Biswas, A.B. (1978) The structure of 4-methyl-5-sulphosalicylic acid tetrahydrate. Acta Crystallographica, B34, 34863488. https://doi.org/10.1107/S0567740878011413CrossRefGoogle Scholar
Yakubovich, O.V., Kotel'nikov, A.R., Shchekina, T.I., Gramenitskiy, E.N. and Zubkov, E.S. (2011) New representative in the sodalite structure type with extraframework anions [AlF6]3–. Crystallography Reports, 56, 190197.CrossRefGoogle Scholar
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material

Download Chukanov et al. supplementary material(File)
File 46.6 KB