Published online by Cambridge University Press: 05 July 2018
The structure of prehnite Ca2Al(AlSi3O10)(OH)2, including H positions, has been determined by a combination of single-crystal X-ray diffraction and neutron powder diffraction on four natural samples. The symmetry of the average structure with Al/Si disordered at the T2 siteis Pncm. However, for four of the crystals studied, numerous violations of the n- and c-glide reflection conditions indicate lower symmetry corresponding to space groups P2cm and P2/n and Al-Si ordered structures, possibly as domains of different symmetries and ordering within a single crystal. Time-of-flight neutron powder diffraction was carried out on a sample from Mali at 293 K and 2 K. The structure was refined in space group Pncm by Rietveld analysis. Although it was not possible to locate the missing H using the 293 K neutron data, these data were used to refine the H position located approximately by single-crystal XRD and to refine Uiso. For the 2 K neutron powder diffraction data, H was located directly by difference-Fourier synthesis and its refined position found to be in close agreement with that obtained by the combined XRD/neutron 293 K dataset.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.