Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T00:42:50.609Z Has data issue: false hasContentIssue false

Innsbruckite, Mn33(Si2O5)14(OH)38 – a new mineral from the Tyrol, Austria

Published online by Cambridge University Press:  05 July 2018

Hannes Krüger*
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Peter Tropper
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Udo Haefeker
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Reinhard Kaindl
Affiliation:
MATERIALS – Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Leobner Strasse 94, 8712 Niklasdorf, Austria
Martina Tribus
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Volker Kahlenberg
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Christoph Wikete
Affiliation:
Material Technology Innsbruck (MTI), University of Innsbruck, Technikerstramße 13, 6020 Innsbruck, Austria
Martin R. Fuchs
Affiliation:
Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
Vincent Olieric
Affiliation:
Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland

Abstract

A description of the new mineral innsbruckite, Mn33(Si2O5)14(OH)38, a hydrous manganese phyllosilicate found in Tyrol, Austria is given. The crystal structure was determined by singlecrystal synchrotron radiation diffraction experiments at the X06DA beamline at the Swiss Light Source (Paul Scherrer Institute, Villigen, Switzerland). The space group is Cm and lattice parameters are a = 17.2760(19), b = 35.957(5), c = 7.2560(8) Å , β = 91.359(7)º, V = 4506.1(10) Å3, Z = 2. Innsbruckite belongs to the group of modulated 1:1 layer silicates and is chemically and structurally quite closely related to bementite, Mn7(Si2O5)3(OH)8. The chemical analysis revealed a close to ideal composition with only minor amounts of Al, Fe and Mg. Using Liebau’s nomenclature for silicate classification the silicate anion can be described as an unbranched siebener single layer. Innsbruckite shows a complex topology of the silicate sheet, exhibiting 4-, 5-, 6- and 8-membered rings. The silicate sheet is fully characterized using vertex symbols, and its topology is compared to those in other complex sheet silicates. Furthermore, the structural investigation is complemented with Raman spectroscopic studies.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F.H. (1986) A systematic pairwise comparison of geometric parameters obtained by X-ray and neutron diffraction. Acta Crystallographica, B42, 515522.CrossRefGoogle Scholar
Blatov, V.A., O’Keeffe, M. and Proserpio, D.M. (2010) Vertex-, face-, point, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm, 12, 4448.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.CrossRefGoogle Scholar
Cadoni, M., Cheah, Y.L. and Ferraris, G. (2010) New RE microporous heteropolyhedral silicates containing 41 51 61 82 tetrahedral sheets. Act a Crystallographica, B66, 158164.CrossRefGoogle Scholar
Chakhmouradian, A.R., Cooper, M.A., Ball, N., Reguir, E.P., Medici, L., Abdu, Y.A. and Antonov, A.A. (2014) Vladykinite, Na3Sr4(Fe2+Fe3+)Si8O24: A new complex sheet silicate from peralkaline rocks of the Murun complex, eastern Siberia, Russia. American Mineralogist, 99, 235241.CrossRefGoogle Scholar
Chernosky, J.V. Jr., (1975) Aggregate refractive indices and unit cell parameters of synthetic serpentine in the system MgO–Al2O3–SiO2–H2O. American Mineralogist, 60, 2002008.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (editors) (2009) Rock-Forming Minerals. Volume 3B: Layered Silicates Excluding Micas and Clay Minerals. Geological Society Publishing House, 2nd edition, 320 pp.Google Scholar
Delgado-Friedrichs, O. (2013) The Gavrog Project: systre 1.2.0 and 3dt 0.6.0. http://gavrog.org. Accessed May 2014. Delgado-Friedrichs, O. and O’Keeffe, M. (2003) Identification of and symmetry computation for crystal nets. Acta Crystallographica, A59, 351360.Google Scholar
Delgado-Friedrichs, O. and O’Keeffe, M. (2005) Crystal nets as graphs: terminology and definitions. Journal of Solid State Chemistry, 178, 24802485.CrossRefGoogle Scholar
Dingeldey, C., Dallmeyer, D., Koller, F. and Massonne, H.J. (1997) P-T-t history of the Lower Austroalpine Nappe Complex in the ‘Tarntaler Berge’ NW of the Tauern Window: implications for the geotectonic evolution of the central Eastern Alps. Contributions to Mineralogy and Petrology, 129, 119.CrossRefGoogle Scholar
Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B. Jr., (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 11041107.Google Scholar
Dunn, P.J. (1995) Franklin and Sterling Hill, New Jersey: The World’s Most Magnificent Mineral Deposits. The Franklin-Ogdensburg Mineralogical Society, Franklin, New Jersey, USA.Google Scholar
Eggleton, R.A. (1991) Gladstone-Dale constants for the major elements in silicates; coordination number, polarizability, and the Lorentz-Lorentz relation. The Canadian Mineralogist, 29, 525532.Google Scholar
Eggleton, R.A. and Guggenheim, S. (1994) The use of electron optical methods to determine the crystal structure of a modulated phyllosilicate: Parsettensite. American Mineralogist, 79, 426437.Google Scholar
Finger, L.W., Kroeker, M. and Toby, B.H. (2007) DRAWxtl, an open-source computer program to produce crystal structure drawings. Journal of Applied Crystallography, 40, 188192.CrossRefGoogle Scholar
Fleet, S.G. (1965) The crystal structure of dalyite. Zeitschrift für Kristallographie, 121, 349368.CrossRefGoogle Scholar
Glettig, W., Vitins, M., Schwarb, A., Maag, S. and Schulze-Briese, C. (2011) First results from PRIGO III, the parallel robotics inspired goniometer for protein crystallography. Proceedings of the Euspen 11th International Conference, 2, 31.Google Scholar
Grice, J.D. and Gault, R.A. (1995) Varennesite, a new species of hydrated Na-Mn silicate with a unique monophyllosilicate structure. The Canadian Mineralogist, 33, 10731081.Google Scholar
Guggenheim, S. and Eggleton, R.A. (1988) Crystal chemistry, classification, and identification of modulated layer silicates. Pp. 675725. in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Guggenheim, S. and Eggleton, R.A. (1994) A comparison of the structures and geometric stabilities of stilpnomelane and parsettensite: a distance leastsquares (DLS) study. American Mineralogist, 79, 438442.Google Scholar
Guggenheim, S. and Eggleton, R.A. (1998) Modulated crystal structures of greenalite and caryopilite; a system with long-range, in-plane structural disorder in the tetrahedra sheet. The Canadian Mineralogist, 36, 163179.Google Scholar
Haile, S.M., Wuensch, B.J., Laudise, R.A. and Maier, J. (1997) Structure of Na3NdSi6O15·2H2O – a layered silicate with paths for possible fast-ion conduction. Acta Crystallographica, B53, 717.CrossRefGoogle Scholar
Heaney, P.J., Post, J.E. and Evans, H.T. (1992) The crystal structure of bannisterite. Clays and Clay Minerals, 40, 129144.CrossRefGoogle Scholar
Heinrich, A.R., Eggleton, R.A. and Guggenheim, S. (1994) Structure and polytypism of bementite, a modulated layer silicate. American Mineralogist, 79, 91106.Google Scholar
Horiba Jobin Yvon, S.A.S. (2010) LabSpec 5. Longjumeau Cedex, France.Google Scholar
Hughes, J.M., Rakovan, J., Bracco, R. and Gunter, M.E. (2003) The atomic arrangement of the ganophyllitegroup modulated layer silicates as determined from the orthorhombic dimorph of tamaite, with the elusive 16.8 Å ganophyllite-group superstructure revealed. American Mineralogist, 88, 13241330.CrossRefGoogle Scholar
Huminicki, D.M. and Hawthorne, F.C. (2002) Refinement of the crystal structure of aminoffite. The Canadian Mineralogist, 40, 915922.CrossRefGoogle Scholar
Johnston, C.T., Helsen, J., Schoonheydt, R.A., Bish, D.L. and Agnew, S.F. (1998) Single-crystal Raman spectroscopic study of dickite. American Mineralogist, 83, 7584.CrossRefGoogle Scholar
Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125132.Google Scholar
Karpov, O.G., Pushcharovskii, D.Y., Pobedimskaya, E.A., Burshtein, I.F. and Belov, A.N.V. (1977) The crystal structure of the rare-earth silicate NaNdSi6O13(OH)2·nH2O. Soviet Physics Doklady, 22, 464466.Google Scholar
Kato, T. (1963) New data on the so-called bementite. Journal of the Mineralogical Society of Japan, 6, 93103.CrossRefGoogle Scholar
Kato, T. and Takeuchi, Y. (1983) The pyrosmalite group minerals; I, structure refinement of manganpyrosmalite. The Canadian Mineralogist, 21, 16.Google Scholar
Klein, H.J. and Liebau, F. (2008) Computerized crystalchemical classification of silicates and related materials with CRYSTANA and formula notation for classified structures. Journal of Solid State Chemistry, 181, 24122417.CrossRefGoogle Scholar
Klier, R. (2005) Das Tarntal Mesozoikum: Petrologie und Geologie einer enigmatischen Einheit in den Ostalpen. Diploma thesis, University of Innsbruck, Austria.Google Scholar
Klier, R. and Tropper, P. (2005) Amphibole zonation as a function of P-T-XCO2-fO2 in blueschists from the Austroalpine Reckner Nappe (Eastern Alps, Austria). Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 150, 69.Google Scholar
Klier, R., Tropper, P. and Rockenschaub, M. (2007) The metamorphic evolution of blueschists of the Tarntal Nappe. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 153, 64.Google Scholar
Krivovichev, S. (2005) Topology of microporous structure. Pp. 1768. in: Micro- and Mesoporous Mineral Phases (Ferraris, G. and Merlino, S., editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Krivovichev, S.V., Pakhomovsky, Y.A., Ivanyuk, G.Y., Mikhailova, J.A., Men’shikov, Y.P., Armbruster, T., Selivanova, E.A. and Meisser, N. (2007) Yakovenchukite-(Y), K3NaCaY2(Si12O30)(H2O)4, a new mineral from the Khibiny massif, Kola Peninsula, Russia: A novel type of octahedraltetrahedral open-framework structure. American Mineralogist, 92, 15251530.CrossRefGoogle Scholar
Kuebler, K.E., Wang, A. and Jolliff, B.L. (2011) Review of terrestrial laihunite and stilpnomelane analogs, identified as potential secondary alteration phases in MIL 03346. Abstracts, 42nd Lunar and Planetary Science Conference, p. 1022.Google Scholar
Krüger, H., Tropper, P., Haefeker, U., Tribus, M., Kahlenberg, V., Wikete, C., Fuchs, M. and Olieric, V. (2013) Innsbruckite, IMA 2013-038. CNMNC Newsletter No. 17, October 2013, page 2999; Mineralogical Magazine, 77, 29973005.Google Scholar
Liebau, F. (1985) Structural Chemistry of silicates – Structure, Bonding, and Classification. Springer- Verlag, Berlin.CrossRefGoogle Scholar
McKeown, D.A., Bell, M.I. and Etz, E.S. (1999a) Raman spectra and vibrational analysis of the trioctahedral mica phlogopite. American Mineralogist, 84, 970976.CrossRefGoogle Scholar
McKeown, D.A., Bell, M.I. and Etz, E.S. (1999b) Vibrational analysis of the dioctahedral mica: 2M1 muscovite. American Mineralogist, 84, 10411048.CrossRefGoogle Scholar
Moore, P.B. (1975) Laueite, pseudolaueite, stewartite and metavauxite: a study in combinatorial polymorphism. Neues Jahrbuch für Mineralogie, Abhandlungen, 123, 148159.Google Scholar
Peacor, D.R., Essene, E.J., Simmons, W.B. Jr., and Bigelow, W.C. (1974) Kellyite, a new Mn-Al member of the serpentine group from Bald Knob, North Carolina, and new data on grovesite. American Mineralogist, 59, 11531156.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. The Crystallographic Computing System. Institute of Physics, Prague, Czech Republic.Google Scholar
Ralph, J. (2014) Mindat.org; http://www.mindat.org. Accessed May 2014.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rouse, R.C., Peacor, D.R., Dunn, P.J., Su, S.C., Chi, P.H. and Yeates, H. (1994) Samfowlerite, a new Ca Mn Zn beryllosilicate mineral from Franklin, New Jersey: its characterization and crystal structure. The Canadian Mineralogist, 32, 4353.Google Scholar
Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica, D65, 148155.Google Scholar
Wahle, M.W., Bujnowski, T.J., Guggenheim, S. and Kogure, T. (2010) Guidottiite, the Mn-analogue of cronstedtite: a new serpentine-group mineral from South Africa. Clays and Clay Minerals, 58, 364376.CrossRefGoogle Scholar
Wang, G., Yan, W., Chen, P., Wang, X., Qian, K., Su, T. and Yu, J. (2007) Na2.4CeSi6O15·2.6H2O: Hydrothermal synthesis, characterization and properties of a new luminescent microporous cerium silicate. Microporous and Mesoporous Materials, 105, 5864.CrossRefGoogle Scholar
Wang, X., Liu L. and Jacobson, A.J. (2002) Openframework and microporous vanadium silicates. Journal of the American Chemical Society, 124, 78127820.CrossRefGoogle ScholarPubMed
Yakovenchuk, V.N., Krivovichev, S.V., Pakhomovsky, Y.A., Ivanyuk, G.Y., Selivanova, E.A., Men’shikov, Y.P. and Britvin, S.N. (2007) Armbrusterite, K5Na6Mn3+Mn2+ 14 [Si9O22]4(OH)10·4H2O, a new Mn hydrous heterophyllosilicate from the Khibiny alkaline massif, Kola Peninsula, Russia. American Mineralogist, 92, 416423.CrossRefGoogle Scholar
Yamnova, N.A., Egorov-Tismenko, Y.K. and Khomyakov, A.P. (1996) Crystal structure of a new natural (Na,Mn,Ti)-phyllosilicate. Crystallography Reports, 41, 239244.Google Scholar
Supplementary material: PDF

Krüger et al. supplementary material

Supplementary Table

Download Krüger et al. supplementary material(PDF)
PDF 79.8 KB
Supplementary material: File

Krüger et al. supplementary material

Innsbruckite cif

Download Krüger et al. supplementary material(File)
File 285 KB
Supplementary material: File

Krüger et al. supplementary material

Innsbruckite cgd

Download Krüger et al. supplementary material(File)
File 1.3 KB
Supplementary material: File

Krüger et al. supplementary material

Innsbruckite arc

Download Krüger et al. supplementary material(File)
File 516 Bytes