Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T18:24:21.079Z Has data issue: false hasContentIssue false

Klaprothite, péligotite and ottohahnite, three new minerals with bidentate UO7–SO4 linkages from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  02 January 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt, 18-2, 119071, Moscow, Russia
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
Jiří Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Prague 9, Czech Republic
*

Abstract

The new minerals klaprothite (IMA2015-087), Na6(UO2)(SO4)4(H2O)4, péligotite (IMA2015-088), Na6(UO2)(SO4)4(H2O)4 and ottohahnite (IMA2015-098),Na6(UO2)2(SO4)5(H2O)7·1.5H2O, were found in the Blue Lizard mine, San Juan County, Utah, USA, where they occur together as secondary phases. All three minerals occur as yellowish-green to greenish-yellow crystals, are brittle with irregular fracture, have Mohs hardness of ∼2½ and exhibit bright bluish-green fluorescence, and all are easily soluble in room temperature H2O. Only klaprothite exhibits cleavage; perfect on {100} and {001}. Quantitative energydispersive spectroscopy analyses yielded the empirical formulas Na6.01(U1.03O2)(S0.993O4)4(H2O)4, Na5.82(U1.02O2)(S1.003O4)4(H2O)4 and Na5.88(U0.99O2)2(S1.008O4)5(H2O)8.5 for klaprothite, péligotite and ottohahnite, respectively. Their Raman spectra exhibit similar features. Klaprothite is monoclinic, P21/c, a = 9.8271(4), b = 9.7452(3), c = 20.8725(15) Å, β = 98.743(7)°, V = 1975.66(17)Å3 and Z = 4. Péligotite is triclinic, P1̄, a = 9.81511(18), b = 9.9575(2), c = 10.6289(8) Å, α = 88.680(6)°, β = 73.990(5)°, γ = 89.205(6)°, V = 998.22(8) Å3 and Z =2. Ottohahnite is triclinic, P1̄, a = 9.97562(19), b = 11.6741(2), c = 14.2903(10) Å, α = 113.518(8)°, β = 104.282(7)°, γ = 91.400(6)°, V = 1464.59(14) Å3 and Z = 2. The structures of klaprothite(R1 = 2.22%) and péligotite (R1 = 2.28%) both contain [(UO2)(SO4)4]6– clusters in which one SO4 group has a bidentate linkage with the UO7 polyhedron; Na–O polyhedra linkclusters into thick heteropolyhedral layers and link layers into frameworks; the structures differ in the configuration of Na–O polyhedra that link the layers. The structure of ottohahnite (R1 = 2.65%) contains [(UO2)4(SO4)10]12–clusters in which each UO7 polyhedron has a bidentate linkage with one SO4 group; Na–O polyhedra link clusters into a thin heteropolyhedral slice and also link the slices into a framework. The minerals are named for Martin Heinrich Klaproth (1743–1817), Eugène-MelchiorPéligot (1811–1890) and Otto Hahn (1879–1968).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxo-uranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Brittain, H.G., Ansari, P., Toivonen, J., Niinisto, L., Tsao, L. and Perry, D.L. (1985) Photophysical Studies of Uranyl Complexes. VIII. Luminiscence Spectra of UO2SO4-31/2H2O and Two Polymorphs of Bis(urea) Uranyl Sulfate. Journal of Solid State Chemistry, 59, 259264.CrossRefGoogle Scholar
Bullock, H. and Parret, F.W. (1970) The low frequency infrared and Raman spectroscopic studies of some uranyl complexes: the deformation frequency of the uranyl io. Canadian Journal of Chemistry, 48, 30953097.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.CrossRefGoogle Scholar
Burns, P.C. and Hayden, L.A. (2002) A uranyl sulfate cluster in Na10[(UO2)(SO4)4](SO4)2-3H2O. Acta Crystallographica, C58, 11211123.Google Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Chenoweth, W.L. (1993) The Geology and Production History of the Uranium Deposits in the White Canyon Mining District, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O'O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Physics and Chemistry of Minerals, 39, 841874.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.Google Scholar
Hayden, L.A. and Burns, P.C. (2002a) The sharing of an edge between a uranyl pentagonal bipyramid and sulfate tetrahedron in the structure of KNa5[(UO2)(SO4)4] (H2O). The Canadian Mineralogist, 40, 211216.CrossRefGoogle Scholar
Hayden, L.A. and Burns, P.C. (2002b) A novel uranyl sulfate cluster in the structure of Na6(UO2)(SO4)4(H2O)2. Journal of Solid State Chemistry, 163, 313318.CrossRefGoogle Scholar
Higashi, T (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, 1 (2014) Belakovskiite, Na7(UO2)(SO4)4(SO3OH) (H2O)3, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 78, 639649.CrossRefGoogle Scholar
Kampf, A.R., Kasatkin, A.V., Čejka, J. and Marty, J. (2015a) Plášilite, Na(UO2)(SO4)(OH)-2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 60, 110.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015b) Bobcookite, NaAl(UO2)2(SO4)4(H2O)18, and wetherillite, Na2Mg(UO2)2(SO4)4-18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015c) Fermiite, Na4(UO2)(SO4)3-3H2O, and oppenheimerite, Na2(UO2)(SO4)2-3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 11231142.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Čejka, J., Marty, J., Škoda, R. and Lapčák, L. (2017a) Alwilkinsite-(Y), a new rare-earth uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 81, https:doi.org/10.1180/minmag.2016.080.139.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. Čejka, J. and Ladislav Lapčák (2017b) Shumwayite, [(UO2) (SO4)(H2O)2]2-H2O, a new uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineralogical Magazine, 81, 273285.CrossRefGoogle Scholar
Krivovichev, S.V. (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo) — structural diversity, nanoscale chemistry, and cellular automata modeling. European Journal of Inorganic Chemistry, 2010, 25942603.CrossRefGoogle Scholar
Krivovichev, S.V. (2013) Crystal chemistry of uranium oxides and minerals. Pp. 611640 in: Comprehensive Inorganic Chemistry II, Vol 2 (J. Reedijk and K. Poeppelmeier, editors). Elsevier, Oxford, UK.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O—H-0 hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship-Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Ohwada, K. (1976) Infrared spectroscopic studies of some uranyl nitrate complexes. Journal of Coordination Chemistry, 6, 7580.CrossRefGoogle Scholar
Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jehlička, J. and Novák, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U-O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.CrossRefGoogle ScholarPubMed
Plášil, J., Kampf, A.R., Kasatkin, A.V., Marty, J., Škoda, R., Silva, S. andČejka, I (2013) Meisserite, Na5(UO2) (SO4)3(SO3OH)(H2O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 29752988.CrossRefGoogle Scholar
Plášil, J., Kampf, A.R., Kasatkin, A.V. and Marty, I (2014) Bluelizardite, Na7(UO2)(SO4)4Cl(H2O)2, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal ofGeosciences, 59, 145158.Google Scholar
Plášil, J., Meisser, N. and Čejka, J. (2015) The crystal structure of Na6[(UO2)(SO4)4](H2O)4: X-ray and Raman spectroscopy study. The Canadian Mineralogist, 54, 520.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history o. SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Wood, R.M. and Palenik, G. J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. Inorganic Chemistry, 38, 39263930.CrossRefGoogle Scholar
Supplementary material: File

Kampf et al. supplementary material

Table 3. Powder X-ray data for klaprothite, péligotite and ottohahnite.

Download Kampf et al. supplementary material(File)
File 28.3 MB