Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T14:57:01.339Z Has data issue: false hasContentIssue false

Major- and trace-element composition of REE-rich turkestanite from peralkaline granites of the Morro Redondo Complex, Graciosa Province, south Brazil

Published online by Cambridge University Press:  05 July 2018

F. C. J. Vilalva*
Affiliation:
Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, Cidade Universitária, 05508-080, São Paulo, SP, Brazil
S. R. F. Vlach
Affiliation:
Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, Cidade Universitária, 05508-080, São Paulo, SP, Brazil
*

Abstract

Turkestanite, a rare Th- and REE-bearing cyclosilicate in the ekanite–steacyite group was found in evolved peralkaline granitesfrom the Morro Redondo Complex, south Brazil. It occurswith quartz, alkali feldspar and an unnamed Y-bearing silicate. Electron microprobe analysis indicates relatively homogeneous compositions with maximum ThO2, Na2O and K2O contentsof 22.4%, 2.93% and 3.15 wt.%, respectively, and significant REE2O3 abundances(5.21 to 11.04 wt.%). The REE patterns show enrichment of LREE over HREE, a strong negative Eu anomaly and positive Ce anomaly, the latter in the most transformed crystals. Laser ablation inductively coupled plasma mass spectrometry trace element patterns display considerable depletions in Nb, Zr, Hf, Ti and Li relative to whole-rock sample compositions. Observed compositional variations suggest the influence of coupled substitution mechanisms involving steacyite, a Na-dominant analogue of turkestanite, iraqite, a REE-bearing end-member in the ekanite–steacyite group, ekanite and some theoretical end-members. Turkestanite crystals were interpreted as having precipitated during post-magmatic stages in the presence of residual HFSE-rich fluidscarrying Ca, the circulation of which wasenhanced by deformational events.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agakhanov, A.A., Pautov, L.A., Uvarova, Y.A., Sokolova, E.V., Hawthorne, F.C., Karpenko, V.Y., Dusmatov, V.D. and Semenov, E.I. (2004) Arapovite, (U,Th)(Ca,Na)2(K1-xnx)Si8O20·H2O -New mineral. New Data on Minerals, 39, 1425.Google Scholar
Bastin, G.F. and Heijligers, H.J.M. (1990) Progress in electron-probe micro-analysis. Materialwissenschaft und Werkstofftechnik, 21, 9092.CrossRefGoogle Scholar
Blundy, J.D. and Wood, BJ. (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature, 372, 452454.CrossRefGoogle Scholar
Boily, M. and Williams-Jones, A.E. (1994) The role of magmatie and hydrofhermal processes in the chemical evolution of the Strange Lake Plutonic Complex (Quebec-Labrador). Contributions to Mineralogy and Petrology, 118, 3347.CrossRefGoogle Scholar
Boynton, W.V. (1984) Cosmochemistry of the rare earth elements: Meteorite studies. Pp. 63114 in: Rare Earth Element Geochemistry (Henderson, P., editor). Elsevier, Amsterdam.CrossRefGoogle Scholar
German, C.R., Masuzuwa, T., Greaves, M.X., Elderfield, H. and Edmond, J.M. (1995) Dissolved rare earth elements in the southern ocean: Cerium oxidation and the influence of hydrography. Geochimica et Cosmochimica Acta, 59, 15511558.CrossRefGoogle Scholar
Ginzburg, I.V., Semenov, E.I., Leonova, L.L., Sidorenko, G.A. and Dusmatov, V.D. (1965) Alkali-rich crystalline ekanite from Central Asia. Trudy Mineralogicheskogo Muzeya. Akademiya Nauk SSSR, 16, 5772.(in Russian).Google Scholar
Goldberg, E.D., Koide, M., Schmitt, RA. and Smith, R.H. (1963) Rare-earth distributions in the marine environment. Journal of Geophysical Research, 68, 42094217.CrossRefGoogle Scholar
Graser, G. and Markl, G. (2008) Ca-rich ilvaite-epidote-hydrogarnet endoskarns: A record of late-magmatic fluid influx into the persodie Ilimaussaq Complex, South Greenland. Journal of Petrology, 49, 239265.CrossRefGoogle Scholar
Gualda, G.A.R. and Vlach, S.R.F. (2007) The Serra da Graciosa A-type granites and syenites, southern Brazil. Part 1: Regional setting and geological characterization. Anais da Academia Brasileira de Ciencias, 79, 405430.CrossRefGoogle Scholar
Jarosewich, E. and Boatner, L.A. (1991) Rare-earth element reference samples for electron mieroprobe analysis. Geostandards Newsletter, 15, 397399.CrossRefGoogle Scholar
Kabalov, Y.K., Sokolova, E., Pautov, L.A. and Schneider, J. (1998) Crystal structure of a new mineral turkestanite: A calcium analogue of steacyite. Kristallografiya, 43, 632636.(in Russian).Google Scholar
Khadem Allah, B., Fontane, F., Kadar, M., Monchoux, P. and Sorensen, H. (1998) Reactions between agpaitic nepheline syenitic melts and sedimentary carbonate rocks, exemplified by the Tamazeght Complex, Morocco. Geochemistry International, 36, 569581.Google Scholar
Livingstone, A., Atkin, D., Hutchison, D. and Al-Hermezi, H.M. (1976) Iraqite, a new rare-earth mineral of the ekanite group. Mineralogical Magazine, 40, 442445.CrossRefGoogle Scholar
Machado, R., Góis, J.R., Plá Cid, J. and Conceição, H. (1993) Maciço alcalino de Morro Redondo (Paraná): Abordagem petrografica das fácies vulcanica e plutânica. Reunião Anual da SBPC, Recife, p. 632.Google Scholar
Mariano, A.N. (1989) Economic geology of rare earth minerals. Pp. 309337 in: Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B.R. and McKay, G.A., editors). Reviews in Mineralogy, 21, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Parodi, G.C. and Delia Ventura, G. (1987) Steacyite from the Rouma Isle (Los Islands, Republic of Guinea). Neues Jahrbuch für Mineralogie Monatshefte, 5, 233239.Google Scholar
Pautov, L.A., Agakhanov, A.A., Sokolova, Y.V. and Kabalov, Y.K. (1997) Turkestanite Th(Ca,Na)2(K1-xnx)Si8020.nH2O — a new mineral with doubled fourfold silicon-oxygen rings. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 126, 4555.(in Russian).Google Scholar
Perrault, G. and Richard, P. (1973) L'ekanite de Saint-Hilaire, P. Q. The Canadian Mineralogist, 11, 913929.Google Scholar
Perrault, G. and Szymański, J.T. (1982) Steacyite, a new name, and a revaluation of the nomenclature of Ekanite-group minerals. The Canadian Mineralogist, 20, 5963.Google Scholar
Petersen, O.V., Johnsen, O. and Micheelsen, H.I. (1999) Turkestanite from the Ilímaussaq Alkaline Complex, South Greenland. Neues Jahrbuch für Mineralogie-Monatshefte, 9, 424432.Google Scholar
Prazeres Filho, H.J., Harara, O.M., Basei, M.A.S., Passarelli, C.R. and Siga, O. Jr., (2003) Litoquímica, geocronologia U-Pb e geologia iso-tópica (Sr-Nd-Pb) das rochas graníticas dos batólitos Cunhaporanga e Três Córregos na porção sul do Cinturão Ribeira, Estado do Paraná. Geologia USP Série Cientifica, 3, 5170.CrossRefGoogle Scholar
Reguir, E.P. and Chakhmouradian, A.R. (1999) The mineralogy of a unique baratovite- and miserite-bearing quartz-albite-aegirine rock from the Dara-i-Pioz Complex, northern Tajikistan. The Canadian Mineralogist, 37, 13691384.Google Scholar
Richard, P. and Perrault, G. (1972) Structure cristalline de l'ékanite de St. Hilaire, P. Q. Ada Crystallographica, B28, 1994-1999.Google Scholar
Salvi, S. and Williams-Jones, A.E. (1990) The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: evidence from fluid inclusions. Geochimica et Cosmochimica Ada, 54, 24032418.CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E. (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Ada, 60, 19171932.CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E. (2006) Alteration, HFSE mineralization and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos, 91, 1934.CrossRefGoogle Scholar
Salvi, S., Fontan, F., Monxhoux, P., Williams-Jones, A.E. and Moine, B. (2000) Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght complex (Morocco). Economic Geology, 95, 559676.Google Scholar
Schonenberger, J., Marks, M., Wagner, T. and Markl, G. (2006) Fluid-rock interaction in autoliths of agpaitic nepheline syenites in the Ilimaussaq intrusion, South Greenland. Lithos, 91, 331351.CrossRefGoogle Scholar
Szymanski, J.T., Owens, D.R., Roberts, A.C., Ansell, H.G. and Chao, G.I. (1982) A mineralogical study and crystal-structure determination of non-metamict ekanite, ThCa2Si8O20 . The Canadian Mineralogist, 20, 6575.Google Scholar
Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Agakhonov, A.A. and Pautov, L.A. (2004) The crystal structure of arapovite, U4+(Ca,Na)2(K1-xDx)[Si8O20], x ∼ 0.5, a new mineral species of the steacyite group from the Dara-i-Pioz Moraine, Tien-Shan Mountains, Tajikistan. The Canadian Mineralogist, 42, 10051011.CrossRefGoogle Scholar
Van Achterbergh, E., Rayan, C.G. and Griffin, W.L. (1999) GLITTER: on-line interactive data reduction for the laser ablation ICP-MS microprobe. Proceedings of the 9th V.M. Goldschmidt Conference, Cambridge, Massachusetts, USA, pp. 305-306.Google Scholar
Vilalva, F.C.J. (2007) Petrografia e mineralogia de granitos peralcalinos: O Pluton Papanduva, Complexo Morro Redondo (PR/SC). Unpublished MSc thesis, Institute de Geociências da Universidade de São Paulo, Brazil, 289 pp.Google Scholar
Vilalva, F.C.J. and Vlach, S.R.F. (2006) Petrography and mineralogy of the peralkaline granites from the Morro Redondo Complex (PR-SC), South Brazil, and some constraints for the development of rare minerals. Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton, Workshop on A-type and related rocks through time (IGCP-510), Belém-PA, Brazil. Abstract Volume and Field Trips Guide, p. 76.Google Scholar
Vlach, S.R.F. (2010) Th-U-PbT dating by electron probe microanalysis, Part I. Monazite: Analytical procedures and data treatment. Geologia USP Serie Cientifica, 10, 6185.CrossRefGoogle Scholar
Vlach, S.R.F. and Gualda, G.A.R. (2007) Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos, 97, 98121.CrossRefGoogle Scholar
Vlach, S.R.F. and Vilalva, F.C.J. (2007) Ocorrência de narsarsukita, britholita-(Ce) e nacareniobsita-(Ce) em granitos peralcalinos do Complexo Morro Redondo (PR/SC), Provincia Graciosa. Anais do XI Congresso Brasileiro de Geoquimica, 2007, Atibaia, SP, CD-ROM. Google Scholar
Vlach, S.R.F., Siga, O. Jr., Gualda, G.A.R., Basei, M.A.S., Hyppolito, T. and Vilalva, F.C.J. (2006) Precise zircon U-Pb (TIMS) dating of dioritic rocks and implications for the age of the Graciosa Province of A-type granites and syenites, southern Brazil. Symposium on Magmatism, Crustal Evolution, and Metalogenesis of the Amazonian Craton, Workshop on A-type granites and related rocks through time (IGCP-510), Belem-PA, Brazil. Abstract Volume and Field Trips Guide, p. 77.Google Scholar
Zhiwei, B. and Zhenhua, Z. (2003) Rare-earth element mobility during ore-forming hydrothermal alteration: A case study of Dongping gold deposit, Hebei Province, China. Chinese Journal of Geochemistry, 22, 4557.CrossRefGoogle Scholar
Supplementary material: File

Vilalva et al. supplementary material

Supplementary Table 1

Download Vilalva et al. supplementary material(File)
File 274.9 KB