Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T08:06:18.136Z Has data issue: false hasContentIssue false

A multiple regression method for estimating Li in tourmaline from electron microprobe analyses

Published online by Cambridge University Press:  02 January 2018

A. Pesquera*
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
P. P. Gil-Crespo
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain
F. Torres-Ruiz
Affiliation:
Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva, s/n, 18071 Granada, Spain
J. Torres-Ruiz
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva, s/n, 18071 Granada, Spain
E. Roda-Robles
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU) P.O. Box 644, 48080 Bilbao, Spain

Abstract

Lithium cannot be determined by electron microprobe, but it may be an essential component in tourmalinesupergroup minerals. Therefore, its estimation is important for structural formula calculation and nomenclature. In this paper, we present a method to estimate Li content in tourmaline from microprobe data based on a multiple linear-regression model, which is not reliant on a particular normalization scheme. The results derived from this model are reasonably accurate, particularly for low-Mg tourmalines (<2 wt.% MgO) with Li2O contents higher than ∼0.3 wt.%. Furthermore, it provides a better fitness compared with estimations of Li assuming that Li fills any cation deficiency at the Y site.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurisicchio, C., Demartin, F., Ottolini, L. and Pezzotta, E (1999a) Homogeneous liddicoatite from Madagascar: a possible reference material? First EMPA, SIMS and SREF data. European Journal of Mineralogy, 11, 237242.CrossRefGoogle Scholar
Aurisicchio, C., Ottolini, L. and Pezzotta, F. (1999b) Electron- and ion-microprobe analyses, and genetic inferences of tourmalines of the foitite-schorl solid solution, Elba Island (Italy). European Journal of Mineralogy, 11, 217225.CrossRefGoogle Scholar
Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S. and Guidotti, C.V. (1999) Linking structure and chemistry in the Schorl-Dravite series. American Mineralogist, 84, 922928.CrossRefGoogle Scholar
Bosi, F., Agrosi, G., Lucchesi, S., Melchiorre, G. and Scandale, E. (2005a) Mn-tourmaline from island of Elba (Italy): Crystal chemistry. American Mineralogist, 90, 16611668.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Federico, M., Graziani, G. and Lucchesi, S. (2005b) Crystal chemistry of the elbaite-schorl series. American Mineralogist, 45, 1784—1792.CrossRefGoogle Scholar
Clark, C.M. (2007) Tourmaline: Structural formula calculations. The Canadian Mineralogist, 45, 229–223CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. andZussman, J. (2008)Disilicates and Ring Silicates. Rock-forming Minerals, 1B, 2nd Ed. Longman Sci. & Tech., England.Google Scholar
Dutrow, B.L. and Henry, D.J. (2000) Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: A record of evolving magmatic and hydrothermal fluids. The Canadian Mineralogist, 38, 131143.CrossRefGoogle Scholar
Dyar, M.D., Taylor, M.E., Lutz, T.M., Francis, C.A., Guidotti, C.V. and Wise, M. (1998) Inclusive chemical characterization of tourmaline: Mossbauer study of Fe valence and site occupancy. American Mineralogist, 83, 848864.CrossRefGoogle Scholar
Dyar, M.D., Guidotti, C.V., Core, D.P., Wearn, K.M., Wise, M.A., Francis, C.A., Johnson, K., Brady, J.B., Robertson, J.D. and Cross, L.R. (1999) Stable isotope and crystal chemistry of tourmaline across pegmatite-country rock boundaries at Black Mountain and Mount Mica, southwestern Maine, USA. European Journal of Mineralogy, 11, 281294.CrossRefGoogle Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Rossman, G.R., London, D. and Fritz, E.A. (2003) Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions. American Mineralogist, 88, 13691376.CrossRefGoogle Scholar
Ertl, A., Rossman, G.R., Hughes, J.M., Prowatke, S. and Ludwig, T. (2005) Mn-bearing “oxy-rossmanite” with tetrahedrally coordinated At and B from Austria: Structure, chemistry, and infrared and optical spectro-scopic study. American Mineralogist, 90, 481—487.CrossRefGoogle Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Ludwig, T., Prasad, P.S.R.., Brandstatter, F., Korner, W., Schuster, R., Pertlik, F. and Marschall, H. (2006) Tetrahedrally coordinated boron in tourmalines from the liddicoatite-elbaite series from Madagascar: Structure, chemistry, and infrared spectroscopic studies. American Mineralogist, 91, 18471856.CrossRefGoogle Scholar
Ertl, A., Rossman, G.R., Hughes, J.M., London, D., Wang, Y., O'Leary, J.A., Dyar, M.D., Prowatke, S., Ludwig, T. and Tillmanns, E. (2010) Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California: A detailed investigation. American Mineralogist, 95, 24—40.CrossRefGoogle Scholar
Ertl, A., Schuster, R., Hughes, J.M., Ludwig, T., Meyer, H.-P., Finger, F., Dyar, M.D., Ruschel, K., Rossman, G.R., Klötzli, U., Brandstätter, F., Lengauer, C.L. and Tillmanns, E. (2012) Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria. European Journal of Mineralogy, 24, 695715.CrossRefGoogle Scholar
Federico, M., Andreozzi, G.B., Lucchesi, S., Graziani, G. and Cesar-Mendes, J. (1998) Compositional variation of tourmaline in the granitic pegmatite dykes of the Cruzeiro mine, Minas Gerais, Brazil. The Canadian Mineralogist, 36, 415431.Google Scholar
Henry, D.J. and Dutrow, B.L. (2002) Metamorphic tourmaline and its petrologic applications. Pp. 503-557 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 3. Mineralogical Society of America Washington DC.Google Scholar
Henry, D.J., Novak, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P. and Pezzotta, F (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895—913.CrossRefGoogle Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1986) Tourmaline as a recorder of pegmatite evolution; Bob Ingersoll Pegmatite, Black Hills, South Dakota. American Mineralogist, 71, 472500.Google Scholar
Kalt, A., Schreyer, W., Ludwig, T., Prowatke, S., Bernhardt, H.J. and Ertl, A. (2001) Complete solid solution between magnesian schorl and lithian excess-boron olenite in a pegmatite from the Koralpe (eastern Alps, Austria). European Journal of Mineralogy, 13, 11911205.CrossRefGoogle Scholar
Leeman, W.P. and Sisson, V.B. (2002) Geochemistry of boron and its implications for crustal and mantle processes. Pp. 645—708 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC. Google Scholar
London, D., Morgan, G.B.(VI) and Wolf, M.B. (2002) Boron in granitic rocks and their contact aureoles. Pp. 299—330 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC.Google Scholar
McGee, J.J. and Anovitz, L.M. (2002) Electron probe microanalysis of geologic materials for boron. Pp. 771—788 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC.Google Scholar
Pieczka, A. and Kraczka, J. (2004) Oxidized tourmalines — a combined chemical, XRD and Mossbauer study. European Journal of Mineralogy, 16, 309—321.CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P. and Torres-Ruiz, J. (2012) From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite—pegmatite system (Zamora, Spain). Lithos, 153, 192207.CrossRefGoogle Scholar
Roda-Robles, E., Simmons, W., Pesquera, A., Gil-Crespo, P.P., Nizamoff, J. and Torres-Ruiz, J. (2015) Tourmaline as a petrogenetic monitor of the origin and evolution of the Berry-Havey pegmatite (Maine U.S.A.). American Mineralogist, 153, 95109.CrossRefGoogle Scholar
Slack, J.F. (2002) Tourmaline associations with hydro-thermal ore deposits. Pp. 559—644 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC. Google Scholar
Tindle, A.G., Breaks, F.W. and Selway, J.B. (2002) Tourmaline in petalite-subtype granitic pegmatites: Evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40, 753788.CrossRefGoogle Scholar
van Hinsberg, V.J., Henry, D.J. and Marschall, H.R. (2011) Tourmaline: an ideal indicator of its host environment. The Canadian Mineralogist, 49, 116.CrossRefGoogle Scholar
Zagorsky, Y.Y (2015) Sosedka pegmatite body at the Malkhan deposit of gem tourmaline, Transbaikalia: Composition, inner structure, and petrogenesis. Petrology, 23, 6892.CrossRefGoogle Scholar