Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T04:37:13.981Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4)

Published online by Cambridge University Press:  02 January 2018

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
*

Abstract

A new mineral katiarsite, ideally KTiO(AsO4), occurs in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with hatertite, bradaczekite, johillerite, yurmarinite, tilasite, arsmirandite, hematite, tenorite, As-bearing orthoclase, fluorophlogopite and aphthitalite. Katiarsite occurs as long prismatic to acicular, typically sword-like, crystals up to 3 μm×10μm×50 μm in size, and rarely up to 0.15 mm long. Crystal forms are {011}, {201}, {100} and {001}. Katiarsite is transparent, colourless, with a vitreous lustre. The mineral is brittle. Cleavage was not observed, the fracture is uneven. Dcalc is 3.49 g cm–3. Katiarsite is optically biaxial (+), α = 1.784(3), β = 1.792(3), γ = 1.870(5); 2Vobs is small. Orientation is X = b, Y = a, Z = c. The Raman spectrum is reported. The chemical composition (wt.%, electron-microprobe data) is K2O 18.98, Fe2O3 5.07, TiO2 27.49, As2O5 47.48, total 99.02. The empirical formula, calculated based on 5 O apfu, is K1.00 (Ti0.85Fe3+0.16)∑1.01 As1.02O5. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are 5.91(17)(110), 5.62(74)(011), 4.18(19)(202), 3.157(66) (013), 2.826(100)(221), 2.809(96)(022) and 2.704(19)(004). Katiarsite is orthorhombic, a = 13.174(4), b = 6.5635(10), c = 10.805(2) Å, V = 934.3(3) Å3, Z = 8, space group Pna21, by analogy with KTA, synthetic KTiO(AsO4), a notable non-linear optical crystalline material. The name of the mineral reflects its chemical composition, kalium titanyl arsenate.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Churakov, S.V., Tkachenko, S.I., Korzhinskii, M.A., Bocharnikov, R.E. and Shmulovich, K.I. (2000) Evolution of composition of high-temperature fuma-rolic gases from Kudryavy volcano, Iturup, Kuril Islands: the thermodynamic modeling. Geochemistry International, 38, 436–51.Google Scholar
El Brahimi, M. and Durand, I (1986) Structure et proprietes d'optique non lineaire de KTiOAsO4 . Revue de Chimie Minerale, 23, 146153.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV The compatibility concept and its application. The Canadian Mineralogist, 14, 498502.Google Scholar
Mayo, S.C., Thomas, P.A., Teat, S.J., Loiacono, G.M. and Loiacono, D.N. (1994) Structure and nonlinear optical properties of KTiOAsO4. Acta Crystallographica, B50, 655662.CrossRefGoogle Scholar
Northrup, P.A., Parise, IB., Cheng, L.K., Cheng, L.T. and McCarron, E.M. (1994) High-temperature single-crystal X-ray diffraction studies of potassium and (cesium, potassium) titanyl arsenates. Chemistry of Materials, 6, 434440.CrossRefGoogle Scholar
Novikova, N.E., Verin, LA., Sorokina, N.I., Alekseeva, O.A., Tseitlin, M. and Roth, M. (2010) Structure of KTiOAsO4 single crystals at 293 and 30 K. Crystallography Reports, 55, 412423.CrossRefGoogle Scholar
Paar, W.H., Cooper, M.A., Hawthorne, F.C., Moffatt, E., Gunther, M.E., Roberts, A.C. and Dunn, P.J. (2009) Braithwaiteite, NaCu5(TiSb)2O2(AsO4)[AsO3(OH)]2-8H2O, a new mineral species from Laurani, Bolivia. The Canadian Mineralogist, 47, 947952.CrossRefGoogle Scholar
Pekov, I.Y., Zubkova, N.Y., Chernyshov, D.Y., Zelenski, M.E., Yapaskurt, YO. and Pushcharovsky, D.Y. (2013) A new Cu-rich variety of lyonsite from fumarolic sublimates of the Tolbachik volcano (Kamchatka, Russia) and its crystal structure. Doklady Earth Sciences, 448, 112116.CrossRefGoogle Scholar
Pekov, I.Y., Zubkova, N.Y., Yapaskurt, YO., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2014a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg, Cu)4(As04)6 . Mineralogical Magazine, 78, 905917.CrossRefGoogle Scholar
Pekov, I.Y., Zubkova, N.Y., Yapaskurt, YO., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (20146) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevs-kite, two natural modifications of Cu4O(AsO4)2 . Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.Y., Zubkova, N.Y., Yapaskurt, V.O., Kartashov, P.M., Polekhovsky, YS., Murashko, M.N. and Pushcharovsky D.Y. (2014c) Koksharovite, CaMg2Fe4 +(VO4)6, and grigorievite, Cu3Fe2 +A12(VO4)6, two new howardevansite-group minerals from volcanic exhalations. European Journal of Mineralogy, 26, 667677.CrossRefGoogle Scholar
Pekov, I.Y., Britvin, S.N., Yapaskurt, YO., Polekhovsky, YS., Krivovichev, S.Y., Vigasina, M.F. and Sidorov, E.G. (2015a) Arsmirandite, IMA 2014-081. CNMNC Newsletter No. 23, February 2015, page 57. Mineralogical Magazine, 79, 51—58.Google Scholar
Pekov, I.Y., Zubkova, N.V., Yapaskurt, YO., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (20156) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2 . Mineralogical Magazine, 79, 133143.CrossRefGoogle Scholar
Pekov, I.Y., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, YO., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y (2015c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4 and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79 17371753.CrossRefGoogle Scholar
Phillips, M.L.F.., Harrison, W.T.A.., Stucky, G.D., McCarron III, E.M., Calabrese, J.C. and Gier, T.E. (1992) Effects of substitution chemistry of in the KTiOPO4 structure field. Chemistry of Materials, 4 222233.CrossRefGoogle Scholar
Stucky, G.D., Phillips, M.L.F.. and Gier, T.E. (1989) The potassium titanyl phosphate structure field: a model for new nonlinear optical materials. Chemistry of Materials, 1 492509.CrossRefGoogle Scholar
Watson, G.H. (1991) Polarized Raman spectra of KTiOAsO4 and isomorphic nonlinear-optical crystals. Journal of Raman Spectroscopy, 22, 705713.CrossRefGoogle Scholar
Weber, M.J. (editor) (2003) Handbook of Optical Materials, . CRC Press, Boca Raton USA.Google Scholar
Zelenski, M., Malik, N. and Taran, Yu. (2014) Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik volcano, Kamchatka: enrichment factors, partition coefficients and aerosol contribution. Journal of Volcanology and Geothermal Research, 285, 136149.CrossRefGoogle Scholar