Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T03:05:46.002Z Has data issue: false hasContentIssue false

Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera

Published online by Cambridge University Press:  05 July 2018

R. J. Goldfarb
Affiliation:
U.S. Geological Survey, M.S. 973, Box 25046, Denver Federal Center, Denver, CO 80225, U.S.A.
L. W. Snee
Affiliation:
U.S. Geological Survey, M.S. 973, Box 25046, Denver Federal Center, Denver, CO 80225, U.S.A.
W. J. Pickthorn
Affiliation:
U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025, U.S.A.

Abstract

Mesothermal, gold-bearing quartz veins are widespread within allochthonous terranes of Alaska that are composed dominantly of greenschist-facies metasedimentary rocks. The most productive lode deposits are concentrated in south-central and southeastern Alaska; small and generally nonproductive gold-bearing veins occur upstream from major placer deposits in interior and northern Alaska. Oreforming fluids in all areas are consistent with derivation from metamorphic devolatilisation reactions, and a close temporal relationship exists between high-T tectonic deformation, igneous activity, and gold mineralization. Ore fluids were of consistently low salinity, CO2-rich, and had δ18O values of 7‰- 12‰ and δD values between −15‰ and −35‰. Upper-crustal temperatures within the metamorphosed terranes reached at least 450-500°C before onset of significant gold-forming hydrothermal activity. Within interior and northern Alaska, latest Paleozoic through Early Cretaceous contractional deformation was characterised by obduction of oceanic crust, low-T/high-P metamorphism, and a lack of gold vein formation. Mid-Cretaceous veining occurred some 50-100 m.y. later, during a subsequent high-T metamorphic/magmatic event, possibly related to extension and uplift. In southern Alaska, gold deposits formed during latter stages of Tertiary, subduction-related, collisional orogenesis and were often temporally coeval with calc-alkaline magmatism.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. D., Freeman, C. J., Goldfarb, R. J., Gent, C. A., and Snee, L. W. (1992) Age and geochemical constraints on mesothermal gold mineralization, Valdez Creek district, Alaska [abs]. Geol. Soc. Am. Abstr. Programs, 24, #5, 2.Google Scholar
Apodoca, L. E. (1992) Fluid inclusion study of the Rock Creek area, Nome mining district, Seward Peninsula, Alaska. U.S. Geol Surv. Bull., 2041, 312.Google Scholar
Armstrong, R. L., Harakal, J. E., Forbes, R. B., Evans, B. W., and Thurston, S. P. (1986) Rb-Sr and K-Ar study of metamorphic rocks of the Seward Peninsula and southern Brooks Range, Alaska. Geol. Soc. Am. Mere., 164, 185203.Google Scholar
Ashworth, K. K. (1983) Genesis of gold deposits of the Little Squaw mines, Chandalar mining district, Alaska. Unpub. M.Sc. thesis. Western Washington Univ., 98 pp.Google Scholar
Bakke, A. (1992) Geology of the Fort Knox gold deposit, Fairbanks, Alaska labs]. Alaska Miners Association 1992 Annual Convention, Abstracts and Papers.Google Scholar
Barker, F. and Arth, J. G. (1990) Two traverses across the Coast batholith, southeastern Alaska. Mem. Geol. Soc. Am., 174, 395405.Google Scholar
Barker, F. and Arth, J. G. and Stern, T. W. (1986) Evolution of the Coast batholith along the Skagway traverse, Alaska and British Columbia. Am. Mineral., 71, 632–43.Google Scholar
Barker, F. Farmer, G. L., Ayuso, R. A., Plafker, G., and Lull, J. S. (1992) The 50 Ma granodiorite of the eastern Gulf of Alaska—Melting in an accretionary prism in the forearc. J. Geophys. Res., 97, 6757–78.Google Scholar
Berg, H. C., Jones, D. L., and Richter, D. H. (1972) Gravina-Nutzotin belt—Tectonic significance of an upper Mesozoic sedimentary and volcanic sequence in southern and southeastern Alaska. U.S. Geol. Surv. Prof. Paper, 800-D, D1-D24.Google Scholar
Bodnar, R. J., Binns, P. R., and Hall, D. L. (1989) Synthetic fluid inclusions—VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. J. Metam. Geol., 7, 229–42.Google Scholar
Borden, J. C., Goldfarb, R. J., Gent, C. A., Burruss, R. C., and Roushey, B. H. (1992) Geochemistry of lode-gold deposits, Nuka Bay district, southern Kenai Peninsula. U.S. Geol Surv. Bull., 2041, 1322.Google Scholar
Bundtzen, T. K. and Miller, M. L. (1992) Petrology and metallogcny of Late Cretaceous-Early Tertiary igneous rocks, Kuskokwim Mountains, southwest Alaska labs]. Geol. Soc. Am. Abstr. Programs, 24, #5, 11.Google Scholar
Burleigh, R. E. (1987) A stable isotope, fluid inclusion and ore petrographic study of gold-quartz veins in the Willow Creek mining district, Alaska. Unpub. M.Sc. thesis. Univ. Alaska, 246 pp.Google Scholar
Christiansen, P. P. and Snee, L. W. (in press) Structure, metamorphism, and geochronology of the Cosmos Hills, Brooks Range schist belt, Alaska. Tectonics. Google Scholar
Cobb, E. H. (1984a) Map showing occurrences of placer gold in Alaska. U.S. Geol. Surv. Mineral Resources Investigations Map, MR-83, 18 pp., 1 sheet, scale 1:2500000.Google Scholar
Cobb, E. H. (1984b) Map showing occurrences of lode gold and silver in Alaska. Ibid., MR-84, 16 pp., 1 sheet scale 1:2500000.Google Scholar
Cohen, H. A., Onstott, T. C., Lundberg, N., and Hall, C. M. (1990) 40/39 Ar laser probe dating of detrital phenocrysts to caonstrain the age of volcanism, Gravina Belt, SE Alaska (abs). EOS, 71, 1616.Google Scholar
Coney, P. J. (1989) The North American Cordillera in The Evolution of the Pacific Ocean Margins. (Z. Ben-Avraham, ed.), Oxford University Press, New York.Google Scholar
Davidson, C. M. (1991) Tectonometamorphic evolution of the Maclaren Glacier metamorphic belt, south-central Alaska. Unpub. Ph.D. thesis. Princeton Univ., 201 pp.Google Scholar
Dillon, J. T., Lamal, K. K., and Huber, J. A. (1987) Gold deposits in the upper Koyukuk and Chandalar mining districts. Ak. Div. Geol. Geophys. Surv. Guidebook, 7, 195201.Google Scholar
Dusel-Bacon, C. (1991) Metamorphic history of Alaska. U.S. Geol. Surv. Open-file Rep., 91-556, 48 pp.Google Scholar
Dusel-Bacon, C. Brosge, W. O., Till, A. B., Doyle, E. O., Mayfield, C. F., Reiser, H. N., and Miller, T. P. (1989) Distribution, facies, ages, and proposed tectonic associations of regionally metamorphosed rocks in northern Alaska: U.S.G.S. Prof. Paper, 1497-A, 44 pp.Google Scholar
Dusel-Bacon, C. Brew, D. A. and Douglas, S. L. (1991) Metamorphic facies map of southeastern Alaska—Distribution, facies, and ages of regionally metamorphosed rocks. U.S. Geol. Surv. Open-file Rep., 91-29,46 pp.Google Scholar
Field, C. W. and Fifarek, R. H. (1985) Light stable-isotope systematies in the epithermal environment. Rev. Econ. Geol., 2, 99128.Google Scholar
Ford, R. C. and Snee, L. W. (1993) Age and structural setting of gold-bearing veins, Bluff area, southern Seward Peninsula, Alaska [abs.]. AIME Abstracts and Program, in press.Google Scholar
Foster, H. L., Keith, T. E. C., and Menzie, W. D. (1987) Geology of east-central Alaska. U.S. Geol. Surv., Open-file Rep., 87-188, 59 pp.Google Scholar
Fuchs, W. A. (1980) Tertiary tectonic history of the Castle Mountain-Caribou fault system in the Tal-keetna Mountains. Unpub. Ph.D. Thesis. Univ. Utah, 152 pp.Google Scholar
Fyfe, W. S. and Kerrich, R. (1984) Gold–Natural concentration processes. Gold ‘82—The Geology, Geochemistry, and Genesis of Gold Deposits. (R. P. Foster, ed.), Balkema, Rotterdam, 99128.Google Scholar
Fyfe, W. S. Price, N. J., and Thompson, A. B. (1978) Fluids in the Earth's crust. Elsevier, Amsterdam.Google Scholar
Gamble, B. M., Ashley, R. P., and Pickthorn, W. J. (1985) Preliminary study of lode gold deposits, Seward Peninsula. U.S. Geol. Surv. Circ., 967, 27-9.Google Scholar
Gehrels, G. E., Brew, D. A., and Saleeby, J. B. (1984) Progress report on U/Pb (zircon) geochronological studies in the Coast plutonic-metamorphic complex east of Juneau, southeastern Alaska. U.S. Geol. Surv. Circ., 939, 100–2.Google Scholar
Goldfarb, R. J., Leach, D. L., Miller, M. L., and Pickthorn, W. J. (1986) Geology, metamorphic setting, and genetic constraints of epigenetic lode-gold mineralization within the Cretaceous Valdez Group, south-central Alaska. Geol. Assoc. Can. Spec. Paper, 32, 87105.Google Scholar
Goldfarb, R. J., Leach, D. L., Roses, S. C., and Landis, G. P. (1989) Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska-Implications for ore genesis. Econ. Geol. Mon., 6, 363–75.Google Scholar
Goldfarb, R. J., Gray, J. D., Pickthorn, W. J., Gent, C. A., and Cieutat, B. H. (1990) Stable isotope systematics of epithermal mercury-antimony mineralization, south-western Alaska. U.S. Geol. Surv. Bulletin, 1950, E1-E9.Google Scholar
Goldfarb, R. J., Newberry, R. J., Pickthorn, W. J., and Gent, C. A. (1991a) Oxygen, hydrogen, and sulfur isotope studies in the Juneau Gold Belt, southeastern Alaska—Constraints on the origin of the hydro thermal fluids. Econ. Geol., 86, 6680.Google Scholar
Goldfarb, R. J., Snee, L. W., Miller, L. D., and Newberry, R. J. (1991b) Rapid dewatering of the crust deduced from ages of mesothermal gold deposits. Nature, 354, 296–8.Google Scholar
Gottschalk, R. R., Oldow, J. S., Ave Lallemant, H. G., and Snee, L. W. (in press) Geologic framework, structural history, and 40Ar/39 thermochronology of the south-central Brooks Range fold and thrust belt, Alaska. Geol. Soc. Am. Memoir. Google Scholar
Gray, J. D., Goldfarb, R. J., Snee, L. W., and Gent, C. A. (1992) Geochemical and temporal conditions for the formation of mercury-antimony deposits, southwestern Alaska [abs]. Geol. Soc. Am. Abstr. Programs, 24, #5, 29.Google Scholar
Hansen, V. L. (1990) Yukon-Tanana terrane—a partial acquittal. Geology, 18, 365–9.Google Scholar
Hansen, V. L. Heizler, M. T., and Harrison, T. M. (1991) Mesozoic thermal evolution of the Yukon-Tanana composite terrane—New evidence from 40Ar/39 data. Tectonics, 10, 5176.Google Scholar
Hedenquist, J. W. (1992) Magmatic contributions to hydrothermal systems and the behavior of volatiles in magma. Geol. Surv. of Japan Rept., 279, 214 pp.Google Scholar
Himmelberg, G. R., Brew, D. A., and Ford, A. B. (1991) Development of inverted metamorphic iso-grads in the western metamorphic belt, Juneau, Alaska. J. Meta. Geol., 9, 165-80.Google Scholar
Hollister, V. F. (1991) Origin of placer gold in the Fairbanks, Alaska area—a newly proposed lode source. Econ. Geol., 86, 402–5.Google Scholar
Hudson, T. and Plafker, G. (1982) Paleogene metamor-phism of an accretionary flysch terrane, eastern Gulf of Alaska. Geol. Soc. Am. Bull., 93, 1281–90.Google Scholar
Jones, D. L., Silberling, N. J., Coney, P. J., and Plafker, G. (1987) Lithoteetonic terrane map of Alaska (west of the 141st Meridian). U.S. Geol. Surv. Misc. Field Studies Map, MF-1874-A, scale 1:2500000.Google Scholar
Karl, S. M., Goldfarb, R. J., Kelley, K. D., Sutphin, S. M., Finn, C. A., Ford, A. B., and Brewster, D. A. (1991) Mineral-resource potential of the Sitka 1° × 3° quadrangle, southeastern Alaska. U.S. Geol. Surv. Circ., 1062, 45-6.Google Scholar
Karl, S. M., Johnson, B. R. and Lanphere, M. A. (1988) New K-Ar ages for plutons on western Chichagof Island and on Yakobi Island. Ibid. 1016, 164-8.Google Scholar
Kerrich, R. (1989) The stable isotope geochemistry of Au-Ag vein deposits in metamorphic rocks. Mineral. Assoc. Can. Short Course, 13, 287336.Google Scholar
Koschmann, A. H. and Bergendahl, M. H. (1968) Principal gold-producing districts of the United States. U.S. Geol. Surv. Prof. Paper, 610, 283 pp.Google Scholar
Kyser, T. K. and Kerrich, R. (1991) Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low tempertures. Geochem. Soc. Spec. Publ., 3, 409-22.Google Scholar
Lanphere, M. A. (1966) Potassium-argon ages of Tertiary plutons in the Prince William Sound region, Alaska. U.S. Geol. Surv. Prof. Paper, 550-D, D195-D198.Google Scholar
LeLacheur, E. A. (1991) Brittle-fault hosted gold mineralization in the Fairbanks district, Alaska. Unpub. M.Sc. thesis. Univ. Alaska.Google Scholar
Lonsdale, P. (1988) Paleogene history of the Kula plate—Offshore evidence and onshore implications. Geol. Soc. Am. Bull., 100, 733–54.Google Scholar
Madden-McGuire, D. J., Silberman, M. L., and Church, S. E., 1989, Geologic relationships, K-Ar ages, and isotopic data from the Willow Creek gold mining district, southern Alaska. Econ. Geol. Mon., 6, 242–51.Google Scholar
Magaritz, M. and Taylor, H. P. (1976) Isotopic evidence for meteoric-hydrothermal alteration of plutonic igneous rocks in the Yakutat Bay and Skagway areas, Alaska. Earth Planet. Sci. Lett., 30, 179–90.Google Scholar
Menzie, W. D., Hua, Renmin, and Foster, H. L. (1987) Newly located occurrences of lode gold near Table Mountain, Circle quadrangle, Alaska. U.S. Geol. Surv. Bull., 1682, 13 pp.Google Scholar
Metz, P. A. and Hamil, B. M. (1987) Origin and extent of the gold, silver, antimony and tungsten mineralization in the Fairbanks mining district, Alaska. Process Mineralogy, VI, 215-38.Google Scholar
Miller, E. L., Calvert, A. T., and Little, T. A. (1992) Strain-collapsed metamorphic isograds in a sillima-nite gneiss dome, Seward Peninsula, Alaska. Geology, 20, 487–90.Google Scholar
Miller, E. L., and Hudson, T. L. (1991) Mid-Cretaceous extensional fragmentation of a Jurasic-Early Cretaceous compressional orogen, Alaska. Tectonics, 10, 781-96.Google Scholar
Mitchell, P. A., Silberman, M. L., and O'Neil, J. R. (1981) Genesis of gold vein mineralization in an Upper Cretaceous turbidite sequence, Hope-Sunrise district, southern Alaska. U.S. Geol. Surv. Open-file Rep., 81-103, 18pp.Google Scholar
Monger, J. W. H. and Berg, H. C. (1987) Lithotectonic terrane map of western Canada and southeastern Alaska. U.S. Geol. Surv. Misc. Field Studies Map, 1874-B, scale 1:2500000.Google Scholar
Monger, J. W. H. Price, R. A. and Tempelman-Kluit, D. J. (1982) Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera. Geology, 10, 7075.Google Scholar
Nesbitt, B. E. (1990) Fluid flow and chemical evolution in the genesis of hydrothermal ore deposits. Mineral. Assoc. Can. Short Course Handb 18, 261–97.Google Scholar
Panuska, B. C. and Stone, D. B. (1985) Latitudinal motion of the Wrangellia and Alexander terranes and the southern Alaska superterrane. Circum Pacific Council for Energy and Mineral Resources, Earth Science Series, 1, 109–20.Google Scholar
Patrick, B. E. and Evans, B. W. (1989) Metamorphic evolution of the Seward Peninsula blueschist terrane. J. Petrol., 30, 531–55.Google Scholar
Pattison, D. R. M. and Tracy, R. J. (1991) Phase equilibria and thermobarometry of calcareous, ultra-mafic and mafic rocks, and iron formations. Rev. Mineral., 26, 105206.Google Scholar
Patton, W. W., Jr., and Box, S. E. (1989) Tectonic setting of the Yukon-Koyukuk basin and its border-lands, western Alaska. J. Geophys. Res., 94, 15 807-15 820.Google Scholar
Pavlis, T. L. (1989) Middle Cretaceous orogenesis in the northern Cordillera—a Mediterranean analog of collision-related extensional tectonics. Geology, 17, 947–50.Google Scholar
Pavlis, T. L. Sisson, V. B., Foster, H. L., Nokleberg, W. J., and G., Plañer (1993) Mid-Cretaceous extensional tectonics of the Yukon-Tanana terrane, trans-Alaska crustal transect (TACT), east-central Alaska. Tectonics, 12, 103–22.Google Scholar
Phillips, G. N. (1991) Gold deposits of Vietoria—a major province within a Palaeozoic sedimentary succession. World Gold ‘91, Cairns, Australia, 237-45.Google Scholar
Pickthorn, W. J. (1984) Stable isotope study of quartz veins in the Port Valdez district. U.S. Geol. Surv. Circ., 939, 6770.Google Scholar
Pickthorn, W. J. Goldfarb, R. J. and Leach, D. L. (1987) Comment on ‘Dual origin of lode gold deposits in the Canadian Cordillera'. Geology, 15, 471–2.Google Scholar
Plafker, G. (1987) Regional geology and petroleum potential of the northern Gulf of Alaska continental margin. Am. Assoc. Petroleum Geol. Circum-Pacific Earth Sci. Series, 6, 229-58.Google Scholar
Plafker, G. and Lanphere, M. A. (1974) Radiometrically dated plutons cutting the Orca Group. U.S. Geol. Surv. Circ., 700, 5.Google Scholar
Powell, R., Will, T. M., and Phillips, G. N. (1991) Metamorphism in Archaean greenstone belts—Calculated fluid compositions and implications for gold mineralization. J. Meta. Geol., 9, 141–50.Google Scholar
Ray, R. G. (1954) Geology and ore deposits of the Willow Creek mining district, Alaska. U.S. Geol. Surv. Bull., 1004, 86pp.Google Scholar
Read, J. and Meinert, L. D. (1986) Gold-bearing quartz vein mineralization at the Big Hurrah mine, Seward Peninsula, Alaska. Econ. Geol., 81, 1760–74.Google Scholar
Reed, B. L., Miesch, A. T., and Lanphere, M. A. (1983) Plutonic rocks of Jurassic age in the Alaska-Aleutian Range batholith—Chemical variations and polarity. Geol. Soc. Am. Bull., 94, 1232-40.Google Scholar
Reed, J. C. and Coats, R. R. (1941) Geology and ore deposits of the Chichagof mining district, Alaska. U.S. Geol. Surv. Bull., 929, 148 pp.Google Scholar
Reifenstuhl, R. R. (1986) Geology of the Goddard Hot Springs area, Baranof Island, southeastern Alaska. Ak. Div. Geol. Geophys. Surv. Public-data File, 86-2, 82 pp.Google Scholar
Robert, F. and Kelley, W. C. (1987) Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol., 82, 1464–82.Google Scholar
Roedder, E. (1984) Fluid inclusions. Mineral. Soc. Am. Rev. Mineral., 12, 644 pp.Google Scholar
Roeske, S. M., Dusel-Bacon, C., Aleinikof, J. N., Snee, L. W., and Lanphere, M. A. (in press) Meta-morphic and structural history of continental crust at a Mesozoic collisional margin, west-central Alaska. J. Metam. Geol. Google Scholar
Romberger, S. B. (1986) The solution chemistry of gold applied to the origin of hydrothermal deposits. Can. Inst. Mining Metall. Spec. Vol., 38, 168-86.Google Scholar
Rose, S. C., Pickthorn, W. J., and Goldfarb, R. J. (1988) Gold mineralization by metamorphic fluids in the Chandalar district, southern Brooks Range— Fluid inclusion and oxygen-isotopic evidence. U.S. Geol. Surv. Circ., 1016, 814.Google Scholar
Ruston, R. W. (1991) A fluid inclusion and stable isotope study of mesothermal Au-quartz veins in the Klondikes schists, Yukon Territory. Unpub. M.Sc. thesis. Univ. Alberta, 192 pp.Google Scholar
Smith, T. E. (1981) Geology of the Clearwater Mountains, south-central Alaska. Ak. Div. Geol. Geophys. Surv. Geol. Rep., 60, 72 pp.Google Scholar
Swainbank, R. C., Bundtzen, T. K., and Wood, J. (1991) Alaska's mineral industry. Ibid., 45, 78 pp.Google Scholar
Suzuoki, T. and Epstein, S. (1976) Hydrogen isotope fractionation between OH-bearing mineral and water. Geochim. Cosmochim. Acta, 40, 1229–40.Google Scholar
Taylor, B. E., Robert, F., Ball, M., and Leitch, C. H. B. (1991) Mesozoic ‘Mother Lode type’ gold deposits in North America—Primary vs secondary (meteoric) fluids [abs]. Geol. Soc. Am. Abstr. Programs, 23, #5, A174.Google Scholar
Taylor, H. P., Jr. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 69, 843–83.Google Scholar
Thurston, S. P. (1985) Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska. Geol. Soc. Am. Bull., 96, 600–17.Google Scholar
Till, A. B. (1992) Detrital blueschist-facies metamor-phic mineral assemblages in early Cretaceous sedi-ments of the foreland basin of the Brooks Range, Alaska, and implications for orogenic evolution. Tectonics, 11, 1207–23.Google Scholar
Till, A. B. Box, S. E., Roeske, S. M., and Patton, W. W. Jr. (in press) Comment on ‘Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous com-pressional orogen, Alaska’. Tectonics. Google Scholar
Till, A. B. and Dumoulin, J. A. (in press) Geology of the Seward Peninsula and Saint Lawrence Island. In The geology of Alaska (Plafker and Berg, eds.) Geol. Soc. Am., Boulder, Colorado.Google Scholar
Wallace, W. K., Hanks, C. L., and Rodgers, J. F. (1989) The southern Kahiltna terrane—Implications for the tectonic evolution of southwestern Alaska. Geol. Soc. Am. Bull., 101, 1389407.Google Scholar
Walther, J. V. and Orville, P. M. (1982) Volatile production and transport in regional metamorphism. Contrib. Mineral. Petrol., 79, 252–7.Google Scholar
Winkler, G. R. (1992) Geologic map and summary geochronology of the Anchorage 1° × 3° quadrangle, southern Alaska. U.S. Geol. Surv. Misc. Geol. Invest. Map, 1-2283, scale 1:250000.Google Scholar
Winkler, G. R. and Plafker, G. (1981) Geologic map and cross sections of the Cordova and Middleton Island quadrangles, southern Alaska. U.S. Geol. Surv. Open-file Rep., 81-1164, scale 1:250000.Google Scholar
Winkler, G. R. Silberman, M. L., Grantz, A., Miller, R. J., and MacKevett, E. M. Jr. (1981) Geologic map and summary geochronology of the Valdez quadrangle, southern Alaska. U.S. Geol. Surv. Open-file Rep., 80-892A, scale 1:250 000.Google Scholar
Wood, D. J., Stowell, H. H., Onstott, T. C., and Hollister, L. S. (1991) constraints on the emplacement, uplift, and cooling of the Coast Plutonic Complex sill, southeastern Alaska. Geol. Soc. Am. Bull., 103, 849–60.2.3.CO;2>CrossRefGoogle Scholar