Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T15:50:39.077Z Has data issue: false hasContentIssue false

The structural behaviour of tetrahedral framework compounds — a review Part II. Framework structures

Published online by Cambridge University Press:  05 July 2018

Abstract

Tetrahedral framework compounds, as defined in this paper, generally exist as tilted and distorted versions of ideal fully expanded structures at room temperature and atmospheric pressure. How pressure, temperature, and composition (P, T, and X) affect the tilting and distortion is critically reviewed. It is shown that although the effects of P, T, and X on the cell parameters are broadly analogous, the underlying structural changes are generally different. An important, and frequently neglected thermal effect is the apparent shortening of the framework bonds by the anisotropic thermal motion of the framework oxygens. Tilting models of framework compounds are critically examined and their failure to match the observed structural behaviour is attributed to changes in tetrahedral distortion. For quartz it appears that during compression the change in tetrahedral distortion is virtually all angular (O-Si-O angles), whereas during thermal expansion the change in distortion is in the Si-O distances. Such behaviour may typify the behaviour of many other framework compounds but the structural data needed to establish this are lacking. The review is illustrated by reference to the quartz and cristobalite analogues; to the sodalite, leucite, nepheline, scapolite, and feldspar families; and to the nitrides and oxynitrides of silicon and germanium. It is concluded that our understanding of the structural behaviour of framework compounds is still superficial and that much theoretical and experimental work remains to be done.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R. J., and Sorrell, C. A. (1974) J. Appl. Crystallogr. 7, 461–7.CrossRefGoogle Scholar
Austin, J. B. (1954) J. Am. Chem. Soc. 76, 6019–20.CrossRefGoogle Scholar
Baur, W. H. (1977) Acta Crystallogr. B33, 19–.Google Scholar
Beagley, B., Henderson, C. M. B., and Taylor, D. (1982) Mineral. Mag. 46, 459–64.CrossRefGoogle Scholar
Berger, C., Eyraud, L., Richard, M., and Riviere, R. (1966) Bull. Soc. Chim. Fr. 106, 628–33.Google Scholar
Bragg, W. L. (1930) Z. Kristallogr. 74, 237–305.Google Scholar
Brown, W. L., Openshaw, R. E., McMillan, P. F., and Henderson, C. M. B. (1983) Am. Mineral. In press.Google Scholar
Buffington, R. M., and Latimer, W. M. (1926) J. Am. Chem. Soc. 48, 2305–19.CrossRefGoogle Scholar
Biissem, W., Bluth, M., and Grochtmann, G. (1935) Ber. Dtsch. Keram. Ges. 16, 381–92.Google Scholar
Cartz, L., and Jorgensen, J. D. (1981) J. Appl. Phys. 52, 236–44.CrossRefGoogle Scholar
d'Amour, H., Denner, W., and Schulz, H. (1979) J. Appl. Crystallogr. B. 35, 550–5.CrossRefGoogle Scholar
Dempsey, M. J., and Taylor, D. (1980) Phys. Chem. Minerals. 6, 197–208.CrossRefGoogle Scholar
Do Dinh, C, and Bertaut, E.-F. (1965) Bull. Soc. Fr. Mineral. Cristallogr. 88, 413–16.Google Scholar
Dollase, W. A. (1965) Z. Kristallogr. 121, 369–77.CrossRefGoogle Scholar
Dollase, W. A. (1970) Ibid. 27, 44.Google Scholar
Dollase, W. A. and Baur, W. H. (1976) Am. Mineral. 61, 971–8.Google Scholar
Ferry, J. M., and Blencoe, J. G. (1978) Ibid. 1225, 40.Google Scholar
Foreman, N., and Peacor, D. R. (1970) Z. Kristallogr. 132, 45–70.CrossRefGoogle Scholar
Gibbs, R. E. (1927) Proc. R. Soc. A311, 68.Google Scholar
Glidewell, C. (1977) Inorg. Nucl. Chem. Lett. 13, 65–8.CrossRefGoogle Scholar
Grimm, H., and Dorner, B. (1975) J. Phys. Chem. Solids. 36, 407–13.CrossRefGoogle Scholar
Grim, R. (1979) Acta Crystallogr. B35, 4.Google Scholar
Henderson, C. M. B. (1979) Contrib. Mineral. Petrol. 70, 71–9.CrossRefGoogle Scholar
Henderson, C. M. B. and Roux, J. (1977) Ibid. 279, 98.Google Scholar
Henderson, C. M. B. and Taylor, D. (1975) Trans. Br. Ceram. Soc. 74, 49–53.Google Scholar
Henderson, C. M. B. (1978) Phys. Chem. Minerals. 2, 337–47.CrossRefGoogle Scholar
Henderson, C. M. B. (1979) Mineral. Mag. 43, 429–31.CrossRefGoogle Scholar
Henderson, C. M. B. (1982) Ibid. 111, 27.Google Scholar
Hirao, K., Soga, N., and Kunugi, M. (1976) J. Phys. Chem. 80, 1612–16.CrossRefGoogle Scholar
Horkner, W., and Miiller-Buschbaum, Hk. (1979) Z. anorg. allg. Chem, 451, 40–4.CrossRefGoogle Scholar
Horn, W. F., and Hummel, F. A. (1980) J. Am. Ceram. Soc. 63, 338–9.CrossRefGoogle Scholar
Idrestedt, I., and Brosset, C. (1964) Acta Chem. Scand. 18, 1879–86.CrossRefGoogle Scholar
Jay, A. H. (1933) Proc. R. Soc. A142, 47.Google Scholar
Johnson, W., and Andrews, K. W. (1956) Trans. Br. Ceram. Soc. 55, 227–36.CrossRefGoogle Scholar
Jorgensen, J. D. (1978) J. Appl. Phys. 49, 5473–8.CrossRefGoogle Scholar
Jorgensen, J. D., Worlton, T. G., Srinivasa, S. R., and Cartz, L. (1976) Proc. Conf. Neutron Scattering. Gatlinberg, June 1976, 5561.Google Scholar
Kato, K., and Nukui, A. (1976) Acta Crystallogr. B32, 91.Google Scholar
Kihara, K. (1978) Z. Kristallogr. 148, 237–53.CrossRefGoogle Scholar
Kihara, K. (1980) Ibid. 95, 101.Google Scholar
Konnert, J. H., and Appleman, D. E. (1978) Acta Crystallogr. B34, 403.Google Scholar
Kosten, K., and Arnold, H. (1980) Z. Kristallogr. 152, 119–33.CrossRefGoogle Scholar
Kozu, S., and Takane, K. (1929) Sci. Rept. Tohoku Univ., ser. 3, 3, 239–46.Google Scholar
Leadbetter, A. J., Smith, T. W., and Wright, A. F. (1973) Nature. 244, 125–6.Google Scholar
Le Page, Y., Calvert, L. D., and Gabe, E. J. (1980) J. Phys. Chem. Solids. 41, 721–5.CrossRefGoogle Scholar
Levien, L. and Papike, J. J. (1976) Am. Mineral. 61, 864–77.Google Scholar
Levien, L., Prewitt, C. T., and Weidner, D. J. (1980) Ibid. 920, 30.Google Scholar
Lindemann, C. L. (1912) Phys. Z. 13, 737–9.Google Scholar
Martin, R. F., and Lagache, M. (1975) Contrib. Mineral. Petrol. 13, 275–81.Google Scholar
Mayer, G. (1960) Rappt. Comm. Energie Atomique (France), no. 1330, 101 pp.Google Scholar
Megaw, H. D. (1971) Mater. Res. Bull. 6, 1007–18.CrossRefGoogle Scholar
Megaw, H. D. (1973) Crystal structures: a working approach. Philadelphia: W. B. Saunders Co.Google Scholar
Ng, H. N., and Calvo, C. (1976) Can. J. Phys. 54, 638–47.CrossRefGoogle Scholar
Ng, H. N. (1977) Ibid. 677, 83.Google Scholar
Nieuwenkamp, W. (1937) Z. Kristallogr. 96, 454–8.Google Scholar
Nix, F. C., and McNair, D. (1941) Rev. Sci. Instrumen. 12, 66–70.CrossRefGoogle Scholar
O'Keeffe, M., and Hyde, B. G. (1978) Acta Crystallogr. B34, 32.Google Scholar
Olinger, B., and Halleck, P. M. (1976) J. Geophys. Res. 81, 5711–14.CrossRefGoogle Scholar
Peacor, D. R. (1973) Z. Kristallogr. 138, 274–98.CrossRefGoogle Scholar
Perrotta, A. J., and Smith, J. V. (1965) Mineral. Mag. 35, 588–95.Google Scholar
Perrotta, A. J. (1968) Bull. Soc. Fr. Mineral. Cristallogr. 91, 85–7.Google Scholar
Rao, K. V. K., Naidu, S. V. N., and Iyengar, L. (1973) J. Appl. Crystallogr. 6, 136–8.CrossRefGoogle Scholar
Rosenholtz, J. L., and Smith, D. T. (1941) Am. Mineral. 26, 103–9.Google Scholar
Roy, D. M., Roy, R., and Osborn, E. F. (1953) J. Am. Ceram. Soc. 36, 185–90.CrossRefGoogle Scholar
Sadanaga, R., and Ozawa, T. (1968) Mineral. J. (Japan). 5, 321–33.CrossRefGoogle Scholar
Sahama, Th. G. (1962) J. Petrol. 3, 65–81.CrossRefGoogle Scholar
Sarver, J. F. (1961) Am. J. Sci. 259, 709–18.CrossRefGoogle Scholar
Saucier, H., and Sapplevitch, A. (1962) Norsk. Geol. Tidsskr. 42, 224–43.Google Scholar
Schneider, H., Florke, O. W., and Majdic, A. (1979) Proc. Br. Ceram. Soc, no. 28, 267–79.Google Scholar
Seifert, K. J., Nowotny, H., and Hauser, E. (1971) Monat. Chemie. 102, 1006–9.CrossRefGoogle Scholar
Smith, J. V., and Tuttle, O. F. (1957) Am. J. Sci. 255, 282–305.CrossRefGoogle Scholar
Srinivasa, S. R., Cartz, L., Jorgensen, J. D., Worlton, T. G., Beyerlin, R. A., and Billy, M. (1977) J. Appl. Crystallogr. 10, 167–71.CrossRefGoogle Scholar
Billy, M. and Labbe, J. C. (1979) Ibid. 511, 16.Google Scholar
Taylor, D. (1968) Mineral. Mag. 36, 761–9.Google Scholar
Taylor, D. (1972) Ibid. 593, 604.Google Scholar
Taylor, D. (1983) Ibid. 319, 26.Google Scholar
Taylor, D. and Henderson, C. M. B. (1968) Am. Mineral. 53, 1476–89.Google Scholar
Taylor, D. (1978) Phys. Chem. Minerals. 2, 325–36.CrossRefGoogle Scholar
Thurston, R. N. (1967) J. Acoust. Soc. Am. 41, 1093–111.CrossRefGoogle Scholar
Uchikawa, H., and Tsukiyama, K. (1966) J. Ceram. Soc. Japan. 74, 13–20.Google Scholar
White, G. K. (1964) Cryogenics. 4, 2–7.CrossRefGoogle Scholar
Wright, A. F., and Leadbetter, A. J. (1975) Philos. Mag. 31, 1391–401.CrossRefGoogle Scholar
Wyckoff, R. W. G. (1925) Z. Kristallogr. 62, 189.Google Scholar
Young, R. A. (1962) Defence Documentation Center, Washington, Rept. No. AD 276235, 156 pp.Google Scholar
Zachariasen, W. H., and Plettinger, H. A. (1965) Acta Crystallogr. 18, 710–14.CrossRefGoogle Scholar