Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T05:43:51.523Z Has data issue: false hasContentIssue false

Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls

Published online by Cambridge University Press:  05 July 2018

A. L. Soldati*
Affiliation:
Department of Geosciences, Johannes Gutenberg-Universität, Becherweg 21, D-55099 Mainz, Germany
D. E. Jacob
Affiliation:
Department of Geosciences, Johannes Gutenberg-Universität, Becherweg 21, D-55099 Mainz, Germany
U. Wehrmeister
Affiliation:
Centre of Gemstone Research, Johannes Gutenberg-Universität, Becherweg 21, D-55099 Mainz, Germany
W. Hofmeister
Affiliation:
Centre of Gemstone Research, Johannes Gutenberg-Universität, Becherweg 21, D-55099 Mainz, Germany

Abstract

Vaterite and aragonite polymorphs in freshwater cultured pearls from mussels of the genus Hyriopsis (Unionidae) were structurally and compositionally characterized by Raman spectroscopy, Micro computer tomography, high resolution field emission scanning electron microscopy, electron microprobe analysis and laser ablation inductively coupled plasma mass spectrometry. The appearance of vaterite in pearls is related to the initial stages of biomineralization, although we demonstrate that vaterite can not be a precursor to aragonite. It is not related to a particular crystal habit and therefore does not have a structural functionality in the pearls. Larger contents of elements typically bound to organic molecules, such as P and S in vaterite, as well as larger total organic contents in vaterite as opposed to aragonite in conjunction with larger concentrations of Mn2+ and Mg2+, imply a stabilizing role of organic macromolecules and X2+ ions for biological vaterite. Distribution coefficients between aragonite and vaterite for provenance-independent elements, such as Mn and Mg (0.27 and 0.04, respectively) agree very well with those observed in fish otoliths.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addadi, L. and Werner, S. (1997) Biomineralization: A pavement of pearl. Nature, 389, 912914.CrossRefGoogle Scholar
Addadi, L., Joester, D., Nudelman, F. and Weiner, S. (2006) Mullusk shell formation: A source of new concepts for understanding biomineralization processes. Chemistry — A European Journal, 12, 980987.CrossRefGoogle Scholar
Akamatsu, S., Zansheng, I.T., Moses, T.M. and Scaratt, K. (2001) The current status of Chinese cultured pearls. Gems and Gemology, 37, 96113.CrossRefGoogle Scholar
Barnard, W. and de Waal, D. (2006) Raman investigation of pigmentary molecules in the molluscan biogenic matrix. Journal of Raman Spectroscopy, 37, 342352.CrossRefGoogle Scholar
Bevelander, G. and Nakahara, H. (1969) An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcified Tissue Research, 3, 8492.CrossRefGoogle ScholarPubMed
Blank, S., Arnoldi, M., Khoshnavaz, S., Treccani, L., Kuntz, M., Mann, K., Grathwohl, G. and Fritz, M. (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. Journal of Microscopy, 212, 280291.CrossRefGoogle ScholarPubMed
Cornells, R., Caruso, J., Crews, H. and Heumann, K. (2005) Handbook of Elemental Speciation II — Species in the Environment, Food, Medicine and Occupational Health. John Wiley & Sons, Chichester, 784 pp.CrossRefGoogle Scholar
de Villiers, J.P.R. (1971) Crystal structures of aragonite, strontianite, and witherite. American Mineralogist, 36, 758767.Google Scholar
Erben, H. and Watabe, N. (1974) Crystal formation and growth in bivalve nacre. Nature, 248, 128130.CrossRefGoogle Scholar
Falini, G., Fermani, S., Gazzano, M. and Ripamonti, A. (2000) Polymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices. Dalton Transactions, 2000, 39833987.CrossRefGoogle Scholar
Falini, G., Fermani, S., Vanzo, S., Miletic, M. and Zaffmo, G. (2005) Influence on the formation of aragonite or vaterite by otolith macromolecules. European Journal of Inorganic Chemistry, 2005, 162167.CrossRefGoogle Scholar
Gauldie, R.W. (1993) Polymorphic crystalline structure of fish otoliths. Journal of Morphology, 218, 1 —28.CrossRefGoogle ScholarPubMed
Gauldie, R.W., Sharma, S.K. and Volk, E. (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch. Comparative Biochemistry and Physiology, A118, 753757.CrossRefGoogle Scholar
Habermann, D., Banerjee, A., Meijer, J. and Stephan, A. (2001) Investigation of Mn in salt and freshwater pearls. Nuclear Instruments and Methods in Physics Research, B181, 739743.CrossRefGoogle Scholar
Hasse, B., Ehrenberg, H., Marxen, J.C., Becker, W. and Epple, M. (2006) Calcium carbonate modifications in the mineralized shell of freshwater snail Biomphalaria glabrata. Chemical European Journal, 6, 36793685.3.0.CO;2-#>CrossRefGoogle Scholar
Hou, W. and Feng, Q. (2006) Morphology and formation mechanism of vaterite particles grown in glycine-containing aqueous solutions. Materials Science and Engineering, C26, 644647.CrossRefGoogle Scholar
Jacob, D.E., Wehrmeister, U., Hager, T. and Hofmeister, W. (2006) Identifying Japanese freshwater cultured pearls from lake Kasumigaura. Australian Gemmologist, 22, 539541.Google Scholar
Kamhi, S. (1963) On the structure of vaterite, CaCO3 . Ada Crystallographica, 16, 770772.CrossRefGoogle Scholar
Karampelas, S., Fritsch, E., Sklavounos, S. and Soldatos, T. (2007) Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi. Journal of Raman Spectroscopy, 38, 217230.CrossRefGoogle Scholar
Landman, N.H., Mikkelsen, P.M., Bieler, R. and Bronson, B. (2001) Pearls. A Natural History. Harry N. Abrams, Inc., New York.Google Scholar
Levi-Kalisman, Y., Falini, G., Addadi, L. and Weiner, S. (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. Journal of Structural Biology, 135, 817.CrossRefGoogle ScholarPubMed
Li, X. (2007) Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells. Journal of the Minerals, Metals and Materials Society, 59, 7174.CrossRefGoogle Scholar
Lippmann, F. (1973) Sedimentary Carbonate Minerals. Springer Verlag, New York.CrossRefGoogle Scholar
Loges, N., Graf, K., Nasdala, L. and Tremel, W. (2006) Probing cooperative interactions of tailor-made nucleation surfaces and macromolecules: A bioin-spired route to hollow micrometer-sized calcium carbonate particles. Langmuir, 22, 30733080.CrossRefGoogle ScholarPubMed
Lowenstam, H.A. and Abbott, D.P. (1975) Vaterite: A mineralization product of the hard tissues of a marine organism (Ascidiacea). Science, 188, 363365.CrossRefGoogle Scholar
Ma, H.Y. and Lee, I.S. (2006) Characterization of vaterite in low quality freshwater-cultured pearls. Materials Science and Engineering, C26, 721723.CrossRefGoogle Scholar
Melancon, S., Fryer, B.J., Ludsin, S.A., Gagnon, J.E. and Yang, Z. (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 62, 26092619.CrossRefGoogle Scholar
Meyer, H.J. (1960) Uber Vaterit und seine Struktur. Fortschritte der Mineralogie, 38, 186187.Google Scholar
Meyer, H.J. (1969) Struktur und Fehlordnung des Vaterits. Zeitschrift fur Kristallographie, 128, 183212.CrossRefGoogle Scholar
Nassrallah-Aboukais, N., Boughriet, A., Gengembre, L. and Aboukais, A. (1998) Manganese (Il)-vaterite-water systems: spectroscopic and thermodynamic study. Journal of the Chemical Society, Faraday Transactions, 94, 23992405.CrossRefGoogle Scholar
Oliveira, A.M. and Farina, M. (1996) Vaterite, calcite and aragonite in the otoliths of three species of piranha. Naturwissenshaften, 83, 133135.CrossRefGoogle Scholar
Plummer, L.N. and Busenberg, E. (1982) The solubilities of calcite, aragonite and vaterite in CO3-H2O solutions between 0 and 9°C, and an evaluation of the aqueous model for the system CaCO3-CO∼-H2O. Geochimica et Cosmochimica Ada, 46, 10111040.CrossRefGoogle Scholar
Qiao, L., Feng, Q.-L. and Li, Z. (2006) Special vaterite found in freshwater lackluster pearls. Crystal Growth and Design, 7, 275279.CrossRefGoogle Scholar
Rhoads, D.C. and Lutz, R.A. (1980) Skeletal growth of aquatic organisms: Biological records of environmental change. Plenum Press, New York and London, 750 pp.CrossRefGoogle Scholar
Rousseau, M., Lopez, E., Stempfle, P., Brendle, M., Franke, L., Alain, G., Naslain, R. and Bourrat, X. (2005) Multiscale structure of sheet nacre. Biomaterials, 26, 62546262.CrossRefGoogle ScholarPubMed
Schone, B.R., Dunca, E., Fiebig, J. and Pfeiffer, M. (2005) Mutvei's solution: An ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 149166.CrossRefGoogle Scholar
Shaikh, A.M. (1990) A new crystal growth form of vaterite, CaCO3 . Journal of Applied Crystallography, 23, 263265.CrossRefGoogle Scholar
Shen, Q., Wei, H., Zhou, Y., Huang, Y., Yang, H., Wang, D. and Xu, D. (2006) Properties of amorphous calcium carbonate and the template action of vaterite spheres. Journal of Physical Chemistry, B110, 29943000.CrossRefGoogle Scholar
Soldati, A.L., Jacob, D.E., Wehrmeister, U., Hager, T. and Hofmeister, W. (2008) Micro Raman spectro-scopy of pigments contained in different calcium carbonate polymorphs from freshwater cultured pearls. Journal of Raman Spectroscopy, 39, 525536.CrossRefGoogle Scholar
Sugawara, A. and Kato, T. (2000) Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices. Chemical Communications, 6, 487488 CrossRefGoogle Scholar
Urmos, I, Sharma, S.K. and Mackenzie, F.T. (1991) Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist, 76, 641646.Google Scholar
Wada, N., Suda, S., Kanamura, K. and Umegaki, T. (2004) Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes. Journal of Colloid and Interface Science, 279, 167174.CrossRefGoogle ScholarPubMed
Wehrmeister, U., Jacob, D.E., Soldati, A.L., Hager, T. and Hofmeister, W. (2007) Vaterite in freshwater cultured pearls from China and Japan. The Journal of Gemmology, 31, 269276.Google Scholar
Wehrmeister, U., Goetz, G., Jacob, D., Soldati, A.L., Duschner, H. and Hofmeister, W. (2008) Visualization of structure and CaCO3 polymorphs in freshwater cultured pearls by computerized X-ray micro tomography. Journal of Gemmology (in press).Google Scholar