Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T00:51:33.294Z Has data issue: false hasContentIssue false

An in-situ high-temperature structural study of stable and metastable CaAl2Si2O8 polymorphs

Published online by Cambridge University Press:  05 July 2018

I. Daniel
Affiliation:
Laboratoire des Sciences de la Terre, Ecole Normale Supérieure de Lyon, URA 726 CNRS, 46 allée d'Italie, 69354 Lyon cedex 07, France
P. Gillet
Affiliation:
Laboratoire des Sciences de la Terre, Ecole Normale Supérieure de Lyon, URA 726 CNRS, 46 allée d'Italie, 69354 Lyon cedex 07, France
P. F. McMillan
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
P. Richet
Affiliation:
Département des Géomatériaux, Institut de Physique du Globe de Paris, 4 place Jussieu, 75252 Paris cedex 05, France

Abstract

High-temperature Raman spectroscopy and optical microscopic observations have revealed a new metastable polymorph of CaAl2Si2O8 composition, which brings to four the number of known crystalline phases in this system. Similar to the metastable monoclinic pseudo-orthorhombic and pseudo-hexagonal phases, the new polymorph nucleates prior to anorthite, at around 1545 K, and its pseudo-liquidus temperature is 1700 ± 10 K. It can also be formed from the transformation of the pseudo-hexagonal phase at 1050 K. The actual structure of this new crystalline form is unknown, but its Raman spectrum indicates that it is most likely a 6-membered alumino-silicate framework. We have obtained all three metastable phases as pure single crystals using wire loop heating techniques, and have studied their structures via Raman spectroscopy up to their metastable melting points or transformation temperatures.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T., Tsukamuto, K. and Sunagawa, I. (1991) Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Phys. Chem. Mineral., 17, 473–84.CrossRefGoogle Scholar
Brandiss, M. E. and Stebbins, J. F. (1988) Effects of temperature on the structures of silicate liquids: 29Si NMR results. Geochim. Cosmochim. Acta, 52, 2659–69.CrossRefGoogle Scholar
Davis, G. L. and Tuttle, O. F. (1952) Two new crystalline phases of the anorthite composition, CaO.Al2O3.SiO2. Amer. J. Sci. Bowen Vol., 107-14.Google Scholar
Drits, V. A., Kashaev, A. A. and Sokolova, G. V. (1975) Crystal structure of Cymrite. Kristallogmfiya, 20, 280–6.Google Scholar
Galeener, F. L. (1979) Band limits and the vibrational spectra of tetrahedral glasses. Phys. Rev. B, 19, 4292–7.CrossRefGoogle Scholar
Graham, C. M., Tareen, J. A. L., McMillan, P. F. and Lowe, B. M. (1992) An experimental and thermo-dynamic study of cymrite an celsian stability in the system BaO-Al2O3-SiO2-H2O. Eur. J. Mineral., 4, 251–69.CrossRefGoogle Scholar
Iishi, K., Tomisaka, T., Kato, T. and Umegaki, Y. (1971) Isomorphous substitution and infrared and far infrared spectra of the feldspar group. Neues Jahrb. Mineral. Abh., 115, 98–119.Google Scholar
Ito, J. (1976) High temperature solvent growth of anorthite on the join CaAl2Si2Og-SiO2 . Contrib. Mineral. Petrol, 59, 187–94.CrossRefGoogle Scholar
Lin, H. C. and Foster, W. R. (1968) Studies in the system BaO-Al2O3-SiO2 I. The polymorphism of celsian. Amer. Mineral, 53, 134–44.Google Scholar
Matson, D. W., Sharma, S. K. and Philpotts, J. A. (1986) Raman spectra of some tectosilicates and glasses along the Orthoclase-anorthite and nepheline-anorthite joins. Amer. Mineral, 71, 694–704.Google Scholar
McMillan, P. F., Piriou, B. and Navrotsky, A. (1982) A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim. Cosmochim. Acta, 46, 2021–37.CrossRefGoogle Scholar
Mysen, B. O., Virgo, D. and Seifert, F. A. (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev. Geophys. Space Phys., 20, 353–83.CrossRefGoogle Scholar
Mysen, B. O. and Frantz, J. D. (1992) Raman spectroscopy of silicate melts at magmatic tempera-tures: Na2O-SiO2 K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25-1475°C. Chem. Geol, 96, 321–32.CrossRefGoogle Scholar
Pentinghaus, H. (1980) Polymorphic in den felspatbil-denden Systemen A+T+O8 und A2+T|+T+O8. Habilitationsschrift, Miinster.Google Scholar
Richet, P. and Bottinga, Y. (1986) Thermochemical properties of silicate glasses and liquids: a review. Rev. Geophys., 24, 15–25.CrossRefGoogle Scholar
Richet, P. and Fiquet, G. (1991) High-temperature heat capacity and premelting of minerals in the system CaO-MgO-Al2O3-SiO2 . J. Geophys. Res., 96, 445–56.CrossRefGoogle Scholar
Richet, P., Gillet, Ph., Pierre, A., Ali Bouhfid, M., Daniel, I. and Fiquet, G. (1993) A versatile heating stage for measurements up to 2700 K, with applications to phase relationship determinations, Raman spectroscopy and X-ray diffraction. J. Applied Phys., 74, 5451–6.CrossRefGoogle Scholar
Seifert, F. A., Mysen, B. O. and Virgo, D. (1982) Three dimensional structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4 . Amer. Mineral, 67, 696–717.Google Scholar
Sharma, S. K., Simons, B. and Yoder, H. S. (1983) Raman study of anorthite, calcium Tschermak's pyroxene, and gehlenite in crystalline and glassy states. Amer. Mineral, 68, 1113–25.Google Scholar
Smith, J. V. and Brown, W. L. (1988) Feldspars minerals. Springer, Berlin Heidelberg New York, 2nd edition.CrossRefGoogle Scholar
Stebbins, J. F., Carmichael, I. S. E. and Moret, L. K. (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib. Mineral. Petrol, 86, 131–48.CrossRefGoogle Scholar
Sunagawa, I. (1992) In situ investigation of nucleation, growth, and dissolution of silicate crystals at high temperature. Ann. Rev. Earth Planet. Sci., 20, 113–42.CrossRefGoogle Scholar
Takeuchi, Y. and Donnay, G. (1959) The crystal structure of hexagonal CaAl2Si208. Acta Crystal-logr., 12, 465–70.CrossRefGoogle Scholar
Takeuchi, Y., Haga, N. and Ito, J. (1973) The crystal structure of monoclinic CaAl2Si2O8: a case of monoclinic structure closely simulating orthorhom-bic symmetry. Zeits. Kristallogr., 137, 380–98.Google Scholar
Taylor, M and Brown, G. E. (1979) Structure of mineral glasses-I. The feldspar glasses NaAlSi3O8, KAlSi3O8and CaAl2Si208 . Geochim. Cosmochim. Acta, 43, 61–75.CrossRefGoogle Scholar
Uhlmann, D. R. (1983) Glass formation, a contemporary view. J. Amer. Ceram. Soc, 66, 95–100.CrossRefGoogle Scholar