Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T15:49:44.840Z Has data issue: false hasContentIssue false

Chemistry, textures and physical properties of quartz — geological interpretation and technical application

Published online by Cambridge University Press:  05 July 2018

J. Götze*
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany

Abstract

Quartz is one of the most abundant minerals in the Earth’s crust and the most important silica mineral, occurring in large amounts in igneous, metamorphic and sedimentary rocks. The mineral is widely used as a raw material in several industrial applications. Because of its chemical composition (SiO2) and its specific properties, quartz can be used both as a bulk product (e.g. quartz sands in the glass or foundry industry) and as a high-tech material (e.g. piezo or optical quartz).

Dependent on the specific conditions of either natural or synthetic formation, quartz can display typomorphic properties. Variations in crystal shape, specific micro-structure, trace element or isotope compositions, characteristic spectroscopic properties, etc. may be controlled by the genesis of the quartz involved. Accordingly, the defect structure of quartz is a fingerprint of its conditions of formation. A knowledge of the interrelation between quartz genesis and the specific properties developed at that time can be used both for the reconstruction of geological processes and for specific technical applications. Selected examples in the present study give an overview of how to analyse and use the specific information inherent in the mineral quartz.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agel, A. (1992) Paramagnetic defect centres in polycrystalline quartz of granitic and metamorphic origin. PhD thesis, Philipps University Marburg, Germany, 109 pp.Google Scholar
Agel, A. and Petrov, I. (1990) Substitutional aluminium in the quartz lattice as indicator for the temperature of formation. European Journal of Mineralogy, 2, Bh.1, 144. (in German).Google Scholar
Alonso, P.J., Halliburton, L.E., Kohnke, E.E. and Bossoli, R.B. (1983) X-ray induced luminescence in crystalline SiO2 . Journal of Applied Physics, 54, 53695375.CrossRefGoogle Scholar
Baker, J.M. and Robinson, P.T. (1983) EPR of a new defect in natural quartz: possibly O2-. Solid State Communications, 48, 551554.CrossRefGoogle Scholar
Bambauer, H.U. (1961) Spurenelemente und g-Farbzentren in Quarzen aus Zerrkluften der Schweizer Alpen. Schweizerische Mineralogische Petrographische Mitteilungen, 41, 335367.Google Scholar
Baranova, N.N., Kozerenko, S.V., Grigorian, S.S., Daryna, T.G. and Saveljev, B.V. (1980) Experimental results about concentrations of gold and silver in hydrothermal solutions Geokhimiya, 8, 146157. (in Russian.).Google Scholar
Basu, A. (1985) Reading provenance from detrital quartz. Pp. 231-248 in: Provenance of arenites (G.G. Zuffa, editor). Reidel, Dordrecht, The Netherlands.Google Scholar
Basu, A., Young, S.W., Suttner, L.J., James, W.C. and Mack, G.H. (1975) Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 45, 873882.Google Scholar
Bershov, L.V., Krylova, M.D. and Speranskij, A.V. (1975) The electron hole centres O-Al and Ti3+ as indicator for temperature conditions during regional metamorphism. Izvestiya Akademii Nauk SSSR, Seria Geologiya, 10, 113117. (in Russian).Google Scholar
Blankenburg, H.-J., Götze, J. and Schulz, H. (1994) Quarzrohstoffe. Deutscher Verlag fiir Grundstoffindustrie, Leipzig-Stuttgart, Germany, 296 pp.Google Scholar
Blatt, H., Middleton, G.V. and Murray, R.C. (1980) Origin of Sedimentary Rocks. 2nd edition. Prentice- Hall, Inc., Englewood Cliffs, New Jersey, USA, 782 pp.Google Scholar
Boggs, S. Jr., Kwon, Y.I., Goles, G.G., Rusk, B.G., Krinsley, D. and Seyedolali, A. (2002) Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. Journal of Sedimentary Research, 72, 408415.CrossRefGoogle Scholar
Botis, S., Nokhrin, S.M., Pan, Y., Xu, Y. and Bonli, T. (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. The Canadian Mineralogist, 43, 15651580.CrossRefGoogle Scholar
Botis, S., Pan, Y., Bonli, T., Xu, Y., Sopuck, V. and Nokhrin, S. (2006) Natural radiation-induced damage in quartz. II. Implications for uranium mineralization in the Athabasca basin. The Canadian Mineralogist, 44, 13871402.CrossRefGoogle Scholar
Channer, D.M., De R., Bray, C.J. and Spooner, E.T. (1999) Integrated cation-anion/volatile fluid inclusion analysis by gas and ion chromatography; methodology and examples. Chemical Geology, 154, 5982.CrossRefGoogle Scholar
Clocchiatti, R. (1975) Les inclusions vitreuses des cristaux de quartz. Etude optique, thermo-optique et chimique. Applications gttologiques. Memoires Societe Geologique France, 122, 196.Google Scholar
Cohen, A.J. (1956) Color centers in alpha-quartz. Part I. Smoky quartz. Journal ofChemistry and Physics, 25, 908914.Google Scholar
Czamanske, G.K., Roedder, E. and Burns, F. (1963) Neutron activation analysis of fluid inclusions for copper, manganese, and zinc. Science, 140, 401403.CrossRefGoogle ScholarPubMed
Dennen, W.H. (1964) Impurities in quartz. Geological Society of America Bulletin, 75, 241246.CrossRefGoogle Scholar
Dennen, W.H. (1966) Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica Acta, 30, 12351241.CrossRefGoogle Scholar
Dennen, W.H. (1967) Trace elements in quartz as indicators of provenance. Geological Society of America Bulletin, 78, 125130.CrossRefGoogle Scholar
Dennen, W.H., Blackburn, W.H. and Quesada, A. (1970) Aluminum in quartz as a geothermometer. Beitmge Mineralogie Petrologie, 28, 332334.CrossRefGoogle Scholar
Ermakov, N.P. (1950) Research on the nature of mineral-forming solutions. University of Kharkov Press, Kharkov, Russia, 460 pp. (in Russian).Google Scholar
Flem, B., Larsen, R.B., Gromstvedt, A. and Mansfeld, J. (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182, 237247.CrossRefGoogle Scholar
Folk, R.L. (1968) Petrology of Sedimentary Rocks. Hemphill, Austin, Texas, USA, 170 pp.Google Scholar
Friebele, E.J., Griscom, D.L., Stapelbroek, M. and Weeks, R.A. (1979) Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica. Physical Review Letters, 42, 13461348.CrossRefGoogle Scholar
Fruth, M. and Blankenburg, H.-J. (1992) Charakterisierung von authigenen idiomorphen Kohle- und Salinarquarzen durch Einschlussunter- suchungen. Neues Jahrbuch fur Mineralogie Abhandlungen, 165, 53—64.Google Scholar
Gemeinert, M., Gaber, M., Hager, I., Willfahrt, M. and Bortschuloun, D. (1992) On correlation of gas- liquid-inclusion's properties and melting behaviour of different genetic quartzes for production of transparent fused silica. Neues Jahrbuch fur Mineralogie Abhandlungen, 165, 19—27.Google Scholar
Gerler, J. (1990) Geochemische Untersuchungen an hydrothermalen, metamorphen, granitischen und p egmatitis ch en Quarz en und der en Fliissigkeitseinschliissen. PhD Thesis, University Gottingen, 169 pp.Google Scholar
Gerler, J. and Schnier, C. (1989) Neutron activation analysis of liquid inclusions exemplified by a quartz sample from the Ramsbeck Mine, F.R.G. Nuclear Geophysics, 3, 41—48.Google Scholar
Ghazi, A.M., Vanko, D.A., Roedder, E. and Seeley, R.C. (1993) Determination of rare earth elements in fluid inclusions by inductively coupled plasma-mass spectrometry (ICP-MS). Geochimica et Cosmochimica Acta, 57, 4513—4516.CrossRefGoogle Scholar
Gorton, N.T., Walker, G. and Burley, S.D. (1996) Experimental analysis of the composite blue CL emission in quartz. Journal of Luminescence, 72—74, 669—671.Google Scholar
Gotte, T. and Richter, D.K. (2006) Cathodo-lumines- cence characterization of quartz particles in mature arenites. Sedimentology, 53, 1347—1359.CrossRefGoogle Scholar
Götze, J. (1997) Mineralogy and geochemistry of German high-purity quartz sands. Pp. 721—724 in: Mineral Deposits: Research and Exploration. (H. Papunen, editor). Balkema, Rotterdam, The Netherlands.Google Scholar
Götze, J. (1998) Geochemistry and provenance of the Altendorf feldspathic sandstone in the Middle Bunter of the Thuringian basin (Germany). Chemical Geology, 150, 43—61.CrossRefGoogle Scholar
Götze, J. (2009a) Cathodoluminescence microscopy and spectroscopy of lunar rocks and minerals. Pp. 87 — 110 in: Cathodoluminescence and its Application in the Planetary Sciences (A. Gucsik, editor). Springer, Berlin Heidelberg New York.Google Scholar
Götze, J. (2009b) Mineralogy, Geochemistry and Cathodoluminescence of Authigenic Quartz from different Sedimentary Rocks. Sedimentology, IAS special publications (in press).Google Scholar
Götze, J. and Lewis, R. (1994) Distribution of REE and trace elements in size and mineral fractions of high purity quartz sands. Chemical Geology, 114, 43—57.CrossRefGoogle Scholar
Götze, J. and Plötze, M. (1997) Investigation of trace- element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR). European Journal of Mineralogy, 9, 529—537.CrossRefGoogle Scholar
Götze, J. and RoBler, R. (2000) Kathodolumineszenz- Untersuchungen an Kieselholzern -1. Silifizierungen aus dem versteinerten Wald von Chemnitz (Perm, Deutschland). Veroffentlichungen Museum fur Naturkunde Chemnitz, 23, 35—50.Google Scholar
Götze, J. and Siedel, H. (2004) Microscopic scale characterization of ancient building sandstones from Saxony (Germany). Materials Characterization, 53, 209—222.CrossRefGoogle Scholar
Götze, J. and Zimmerle, W. (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Petrology 21, Schweizerbartsche Verlagsbuchhandlung, Nagele & Obermiller, Stuttgart, Germany, 91 pp.Google Scholar
Götze, J., Hohne, D. and Do, T.Q. (1993) Genesis and melting behavior of quartz raw materials. Sprechsaal International Ceramics & Glass Magazine, 126, 473—478.Google Scholar
Götze, J., Plötze, M., Fuchs, H. and Habermann, D. (1999) Defect structure and luminescence behaviour of agate — results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63, 149—163.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Habermann, D. (2001a) Cathodoluminescence (CL) of quartz: origin, spectral characteristics and practical applications. Mineralogy and Petrology, 71, 225—250.Google Scholar
Götze, J., Plötze, M., Tichomirowa, M., Fuchs, H. and Pilot, J. (2001b) Aluminium in quartz as an indicator for the temperature of formation of agate. Mineralogical Magazine, 65, 400—406.CrossRefGoogle Scholar
Götze, J., Tichomirowa, H., Fuchs, H., Pilot, J. and Sharp, Z.D. (2001c) Geochemistry of agates: a trace element and stable isotope study. Chemical Geology, 175, 523—541.CrossRefGoogle Scholar
Götze, J., Plötze, M., Graupner, T., Hallbauer, D.K. and Bray, C. (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis and gas chromatography. Geochimica et Cosmochimica Acta, 68, 3741—3759.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Trautmann, T. (2005) Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist, 90, 13—21.CrossRefGoogle Scholar
Götze, J., Siedel, H. and Magnus, M. (2007) Provenance determination of building sandstones: a methodology applied to Cretaceous sandstones from Saxony (Germany). Zeitschrift der Deutschen Gesellschaft fiir Geowissenschaften, 158, 807—819.Google Scholar
Götze, J., Mockel, R., Langhof, N., Hengst, M. and Klinger, M. (2008) Silicification of wood in the laboratory. Ceramics Silikiity, 52, 268—277.Google Scholar
Gotzinger, M.A. (1990) Determination of aqueous salt solutions in fluid inclusions by infrared investigations. Neues Jahrbuch Mineralogie Monatshefte, 1 — 12.Google Scholar
Graupner, T., Götze, J., Kempe, U. and Wolf, D. (2000) Cathodoluminescence imaging as a tool for characterization of quartz and trapped fluid inclusions in multistage deformed mesothermal Au-quartz vein deposits: A case study from the giant Muruntau Au- ore deposit (Uzbekistan). Mineralogical Magazine, 64, 10071016.CrossRefGoogle Scholar
Graupner, T., Kempe, U., Götze, J., Wolf, D., Irmer, G. and Kremenetsky, A.A. (2001) Au deposition and remobilization in the Muruntau Central quartz veins: Evidence from SEM, cathodoluminescence and fluid inclusion data. Pp. 747-750 in: Mineral Deposits at the Beginning of the 21st Century (A. Piestrzyski et al., editors). Swets & Zeitlinger Publishers, Lisse, The Netherlands.Google Scholar
Griffiths, J.H., Owen, J. and Ward, I.M. (1954) Paramagnetic resonance in neutron-irradiated diamond and smoky quartz. Nature, 173, 439442.CrossRefGoogle Scholar
Griscom, D.L. (1985) Defect structure of glasses. Journal of Non-Crystalline Solids, 73 , 5177.CrossRefGoogle Scholar
Habermann, D., Götze, J., Neuser, R. and Richter, D.K. (1997) The phenomenon of intrinsic cathodolumi- nescence: Case studies of quartz, calcite and apatite. Zentralblatt fUr Geologie und Palaontologie Teil 1, 10-12, 1275-1284.Google Scholar
Hallbauer, D.K. (1992) The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks. Geologcal Society of South Africa 24th Congress, Bloemfontein, Abstracts, 157-159.Google Scholar
Hallbauer, D.K. (1997) The application of capillary ion analysis to the geochemistry of natural aqueous fluids and in particular to the analysis of fluid inclusions in minerals. Geologcal Society of South Africa, Proceedings 30th International Geological Congress, 9, 409424.Google Scholar
Hanson, B., Delano, J.W. and Lindstrom, D.J. (1996) High-precision analysis of hydrous rhyolitic glass inclusions in quartz phenocrysts using the electron microprobe and INAA. American Mineralogist, 81, 12491262.CrossRefGoogle Scholar
Heynke, U. (1990) Lagerstāttenkundlich-mikroparagen-etische Untersuchungen an Quarzen aus Lagerstatten und erkundeten Vorkommen unterschie- dlicher Genese. PhD thesis, TU Bergakademie Freiberg, Germany, 110 pp.Google Scholar
Heynke, U., Leeder, O. and Schulz, H. (1992) On distinguishing quartz of hydrothermal or metamor- phogenic origin in different monomineralic veins in the eastern part of Germany. Mineralogy and Petrology, 46, 315329.CrossRefGoogle Scholar
Houseknecht, D.W. (1991) Use of cathodoluminescence petrography for understanding compaction, quartz cementation, and porosity in sandstones. Pp. 59-66 in: Luminescence Microscopy: Quantitative and Qualitative Aspects (C.E. Baker and O.C Kopp, editors). SEPM, Dallas, Texas, USA.Google Scholar
Ioannou, S.E., Götze, J., Weiershauser, L., Zubowski, S.M. and Spooner, E.T. (2003) Cathodoluminesc- ence characteristics of Archean VMS-related quartz: Noranda, Ben Nevis, and Matagami districs, Abitibi Subprovince, Canada. G3 Online Publication, 5, D0I:10.1029/2003GC000613.Google Scholar
Jacamon, F. (2006) The significance of textures and trace element chemistry of quartz with regard to the petrogenesis of granitic rocks. PhD thesis, NTNU Trondheim, Norway.Google Scholar
Jourdan, A-L. (2008) Elemental and isotopic zoning in natural Alpine quartz. PhD thesis University Lausanne, Switzerland.Google Scholar
Jung, L. (1992) High purity natural quartz. Part I: High purity natural quartz for industrial use. Part II: High purity natural quartz markets for suppliers and users. Quartz Technology. Liberty Corner, New Jersey, USA, 657 pp.Google Scholar
Klemm, W. (1986) Beitrāge zur analytischen Geochemie von Gas-Fliissigkeits-Einschliissen in hydrothermalen Mineralen. Habilitation thesis, TU Bergakademie Freiberg, Germany.Google Scholar
Klemm, W. (1994) Chemical evolution of hydrothermal solutions during Variscan and Post-Variscan mineralization in the Erzgebirge, Germany. Pp. 150-158 in: Metallogeny of Collisional Orogens (R. Seltmann, H. Kampf and P. Moller, editors). Czech Geological Survey, Prague.Google Scholar
Komuro, K., Horikawa, Y. and Toyoda, S. (2002) Development of radiation-damage halos in low- quartz: cathodoluminescence measurement after He+ ion implantation. Mineralogy and Petrology, 76, 261266.CrossRefGoogle Scholar
Kostov, R.I. and Bershov, L.V. (1987) Systematics of paramagnetic electron-hole centres in natural quartz. Izvestiya Akademii nauk USSR, Seria geologia, 7, 8087.(in Russian).Google Scholar
Kostova, B., Pettke, T., Driesner, T., Petrov, P. and Heinrich, C.A. (2004) LA-ICP-MS study of fluid inclusions in quartz from the Yuzhna Petrovitsa deposit, Madan ore field, Bulgaria. Swiss Bulletin of Mineralogy and Petrology, 84, 2536.Google Scholar
Krickl, R., Nasdala, L., Götze, J., Grambole, D. and Wirth, R. (2008) Alteration of SiO2 caused by natural and artificial alpha-irradiation. European Journal of Mineralogy, 20, 517522.CrossRefGoogle Scholar
Krinsley, D.H. and Doornkamp, J.C. (1973) Atlas of quartz sand surface textures. University Press, Cambridge., UK.Google Scholar
Larsen, R.B., Polve, M. and Juve, G. (2000) Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for high-purity quartz formation. Norges Geologiske Unders0kelse Bulletin, 436, 5765.Google Scholar
Larsen, R.B., Henderson, I., Ihlen, P.M. and Jacamon, F. (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contributions to Mineralogy and Petrology, 147, 615628.CrossRefGoogle Scholar
Leeder, O., Thomas, R. and Klemm, W. (1987) EinschlUsse in Mineralen. VEB Deutscher Grundstoffverlag, Leipzig, Germany.Google Scholar
Le Ribault, L. (1977) L’exoscopie des quartz. Techniques et Methodes Sedimentologiques. Collection publiee sous la Direction de A. Riviere. Massone, Paris, 150 pp.Google Scholar
London, D. (1985) Origin and significance of inclusions in quartz: A cautionary example from the Tanco pegmatite, Manitoba. Economic Geology, 80, 19881995.CrossRefGoogle Scholar
Luff, B.J. and Townsend, P.D. (1990) Cathodo- luminescence of synthetic quartz. Journal of Physics: Condensed Matter, 2, 80898097.Google Scholar
Lyakhovich, V.V. (1972) Trace Elements in Rockforming Minerals of Granitoides. Nedra, Moscow, 200 pp. (in Russian).Google Scholar
Mackey, J.H. (1963) EPR study of impurity-related color centers in germanium-doped quartz. Journal of Chemical Physics, 39, 7483.CrossRefGoogle Scholar
Mainley, C.R. (1996) Morphology and maturation of melt inclusions in quartz phenocrysts from the Badlands rhyolite lava flow, southwestern Idaho. American Mineralogist, 81, 158168.CrossRefGoogle Scholar
Malinko, S.V., Berman, I.B., Rudnev, V.V. and Stolyarova A.N. (1976) Inclusions of boron-bearing hydrothermal solutions in quartz crystals based on (n, a) radiography. Doklady Akademii Nauk SSSR, 228, 117-120. (in Russian).Google Scholar
Matyash, I.V., Brik, A.B., Zayats, A.P. and Masykin, V.V. (1987) Radio-spectroscopy of Quartz. Naukova Dumka, Kiev, 165 pp. (in Russian).Google Scholar
Matysova, P., Leichman, J., Grygar, T. and Rossler, R. (2008) Cathodoluminescence of silicified trunks from the Permo-Carboniferous basins in eastern Bohemia, Czech Republic. European Journal of Mineralogy, 20, 217231.CrossRefGoogle Scholar
Meunier, J.D., Sellier, E. and Pagel, M. (1990) Radiation-damage rims in quartz from uraniumbearing sandstones. Journal of Sedimentary Petrology, 60, 5358.Google Scholar
Michalski, St., Götze, J., Siedel, H., Magnus, M. and Heimann, R.B. (2002) Investigations into provenance and properties of ancient building sandstones of the Zittau/Gorlitz region (Upper Lusatia, Eastern Saxony, Germany). Pp. 281-295 in: Natural stone, weathering phenomena, conservation strategies and case studies (S. Siegesmund, A. Vollbrecht and T. Weiss, editors). Special Publications, 205, The Geological Society, London.Google Scholar
Milliken, K.L. and Laubach, S.E. (2000) Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. Pp. 225-243 in: Cathodoluminescence in Geosciences (M. Pagel, V. Barbin, P. Blanc and D. Ohnenstetter, editors). Springer, Berlin Heidelberg New York Tokyo.CrossRefGoogle Scholar
Mineeva, R.M., Bershov, L.V. and Petrov, I. (1991) EPR of surface-bound Fe3+ ions in polycrystalline quartz. Doklady Akademii Nauk SSSR, 321, 368372. (in Russian).Google Scholar
Miyoshi, N., Yamaguchi, Y. and Makino, K. (2005) Successive zoning of Al and H in hydrothermal vein quartz. American Mineralogist, 90, 310315.CrossRefGoogle Scholar
Monecke, T., Kempe, U., Petersen, S., Götze, J., Herzig, P. and Wolf, D. (1999) Trace element characteristics of quartz from the TAG hydrothermal mound (MidAtlantic Ridge at 26°08'N). Mineral Deposits: Processes to Processing. Balkema, Rotterdam, The Netherlands, 551-554.Google Scholar
Monecke, T., Bombach, G., Klemm, W., Kempe, U., Götze, J. and Wolf, D. (2000) Determination of trace elements in quartz standard UNS-SpS and in natural quartz by ICP-MS. Geostandards Newsletter, 24, 7381.CrossRefGoogle Scholar
Monecke, T., Kempe, U. and Götze, J. (2002a) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth and Planetary Science Letters, 202, 709724.CrossRefGoogle Scholar
Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D. (2002 b) Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochimica et Cosmochimica Acta, 66, 1185-1196.CrossRefGoogle Scholar
Mosebach, R. (1955) Neue Ergebnisse auf dem Gebiet der hydrothermalen Forschung. Chemiker Zeitung, 79, 583599.Google Scholar
Müller, A., Seltmann, R. and Behr, H.-J. (2000) Application of cathodoluminescence to magmatic quartz in tin granite - case study from the Schellerhau Granite Complex, Eastern Ertgebirge, Germany. Mineralium Deposita, 35, 169185.Google Scholar
Müller, A., Kronz, A. and Breiter, K. (2002) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krušne Hory, Czech Republic). Bulletin Czech Geological Survey, 77, 135145.Google Scholar
Müller, A., Rene, M., Behr, H.-J. and Kronz, A. (2003a) Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsk Les Mts., Czech Rebublic). Mineralogy and Petrology, 79, 167191.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Van den Kerkhof, A.M., Kronz, A. and Simon, K. (2003b) Trace elements in quartz - a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy, 15, 747—763.Google Scholar
Müller, A., Ihlen, P.M. and Kronz, A. (2005) Potential resources of quartz and feldspar raw material in S0rland IV: Relationships between quartz, feldspar and mica chemistry and pegmatite type. Norwegian Geological Survey Report 2005.075, Trondheim, Norway, 94 pp.Google Scholar
Müller, A., Ihlen, P.M. and Kronz, A. (2008) Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. European Journal of Mineralogy, 20, 447—464.Google Scholar
Mullis, J. and Ramseyer, K. (1991) Fluid controlled Al- incorporation in quartz crystals. Terra Abstracts, 3, 102.Google Scholar
Nacken, R. (1950) Hydrothermale Mineralsynthese zur Zuchtung von Quarzkristallen. Chemiker Zeitung, 74, 745—749.Google Scholar
Naumov, G.B., Mironova, O.F., Saveleva, N.I. and Danilova, T.V. (1984) Concentration of uranium in hydrothermal solutions obtained from investigations of fluid inclusions. Doklady Akademii Nauk SSSR, 279, 1486—1488. (in Russian).Google Scholar
Nishikawa, H., Watanabe, E., Ito, D. and Ohki, Y. (1994) Decay kinetics of the 4.4 eV photoluminescence associated with the two states of oxygen- deficient-type defect in amorphous SiO2 . Physical Review Letters, 72, 2101—2104.CrossRefGoogle ScholarPubMed
Nuttall, R.H. and Weil, J.A. (1981) The magnetic properties of the oxygen-hole aluminium centers in crystalline SiO2. I. [AlO4]0. Canadian Journal of Physics, 59, 1696—1708.Google Scholar
O’Brien, M.C. (1955) The structure of the colour centres in smoky quartz. Proceedings of the Royal Society, A 231, 404 —414.Google Scholar
Owen, M.R. (1988) Radiation-damage halos in quartz. Geology, 16, 529—532.2.3.CO;2>CrossRefGoogle Scholar
Pan, Y., Botis, S. and Nokhrin, S. (2006) Applications of natural radiation-induced paramagnetic defects in quartz to exploration in sedimentary basins. Journal of China University of Geosciences, 17, 258—271.CrossRefGoogle Scholar
Passchier, C.W. and Trouw, R.A. (1998) Microtectonics. Springer, Berlin Heidelberg New York, 289 pp.CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K. and Mullis, J. (1992) Microdistribution of aluminium, lithium and sodium in quartz: possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77, 534—544.Google Scholar
Pickney, D.M. and Haffty, J. (1970) Content of zinc and copper in some fluid inclusions from the Cave-inRock district, South Illinois. Economic Geology, 65, 451—458.Google Scholar
Plötze, M. (1995) EPR investigations of quartz, scheelite and fluorite from high-thermal trace-metal miner alization. PhD thesis, TU Bergakademie Freiberg, 141 pp (in German).Google Scholar
Poutivcev, M., Kempe, U., Götze, J., Monecke, Th., Wolf, D. and Kremenetsky, A. (2001) Constraints on the genesis of quartz pebbles in Au-U bearing and barren Witwatersrand conglomerates from CL microscopy and trace element analysis. Cathodoluminescence in Geosciences: New Insights from CL in Combination with other Techniques, Freiberg, Germany. Abstracts, 71—72.Google Scholar
Rakov, L.T. and Milovidova, N.D. (1991) Thermal stability of paramagnetic centres in rock-forming quartz. Izvestiya Akademii Nauk, Seria Geologia, 12, 1064—1068. (in Russian).Google Scholar
Rakov, L.T., Milovidova, N.D., Kuvshinova, K.A. and Moiseev, B.M. (1985) EPR investigations of germanium centers in natural polycrystalline quartz. Geokhimiya, 9, 1339—1344. (in Russian).Google Scholar
Ramseyer, K. and Mullis, J. (1990) Factors influencing short-lived blue cathodoluminescence of a-quartz. American Mineralogist, 75, 791—800.Google Scholar
Ramseyer, K., Baumann, J., Matter, A. and Mullis, J. (1988) Cathodoluminescence colours of a-quartz. Mineralogical Magazine, 52, 669—677.CrossRefGoogle Scholar
Ramseyer, K., Al Dahan, A.A., Collini, B. and Landstrom, O. (1992) Petrological modifications in granitic rocks from the Siljan impact structure: evidence from cathodoluminescence. Tectonophysics, 216, 195—204.CrossRefGoogle Scholar
Richter, D.K. (1971) Fazies- und Diagenesehinweise durch Einschliisse in authigenen Quarzen. Neues Jahrbuch fur Geologie und Palaonthologie Monatshefte, 10, 604—622.Google Scholar
Richter, D.K., Gotte, Th., Götze, J. and Neuser, R.D. (2003) Progress in application of cathodolumines- cence (CL) in sedimentary geology. Mineralogy and Petrology, 79, 127166.CrossRefGoogle Scholar
Rinneberg, H. and Weil, J.A. (1972) EPR studies of Ti3+-H+ centers in X-irradiated a-quartz. Journal of Chemical Physics, 56, 2019—2028.CrossRefGoogle Scholar
Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12, Mineralogical Society of America, Chantilly, Virginia, USA, 645 pp.CrossRefGoogle Scholar
Rosler, H.J. (1981) Lehrbuch der Mineralogie. 2. Aufl., VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, Germany, 833 pp.Google Scholar
Rossman, G.R., Weis, D. and Wasserburg, G.J. (1987) Rb, Sr, Nd and Sm concentrations in quartz. Geochimica et Cosmochimica Acta, 51, 2325—2329.CrossRefGoogle Scholar
Rusk, B.G., Reed, M.H., Dilles, J.H. and Kent, A.J. (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91, 1300—1312.CrossRefGoogle Scholar
Rusk, B., Lowers, H.A. and Reed, M.H. (2008) Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36, 547—550.CrossRefGoogle Scholar
Rykart, R. (1989) Quarz-Monographie. Ott Verlag Thun, Switzerland, 462 pp.Google Scholar
Schron, W., Baumann, L. and Rank, K. (1982) Zur Charakterisierung von Quarzgenerationen in den postmagmatogenen Erzformationen des Erzgebirges. Zeitschrift fur Geologische Wissenschaften, 10, 1499—1521.Google Scholar
Schron, W., Schmadicke, E., Thomas, R. and Schmidt, W. (1988) Geochemische Untersuchungen an Pegmatitquarzen. Zeitschrift fur Geologische Wissenschaften, 16, 229—244.Google Scholar
Sharp, T.G., El Goresy, A., Wopenka, B. and Chen, M. (1999) A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science, 284, 15111513.CrossRefGoogle ScholarPubMed
Shepherd, T.J., Rankin, A.H. and Alderton, D.H. (1985) A Practical Guide to Fluid Inclusion Studies Blackie & Sons, Glasgow, UK, 239 pp.Google Scholar
Siegel, G.H. and Marrone, M.J. (1981) Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of nonbridging oxygen defect centres. Journal of NonCrystalline Solids, 45, 235—247.Google Scholar
Sippel, R.F. (1968) Sandstone petrology evidence from luminescence petrography. Journal of Sedimentary Petrology, 38, 530—554.CrossRefGoogle Scholar
Sippel, R.F. (1971) Luminescence petrography of the Apollo 12 rocks and comparative features in terrestrial rocks and meteorites. Proceedings of the Second Lunar Science Conference, 1, 247—263.Google Scholar
Skuja, L. (1998) Optically active oxygen-deficiency- related centers in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 239, 16—48.CrossRefGoogle Scholar
Sorby, H.C. (1858) On the microscopical structure of crystals, indicating the origin of minerals in rocks. Quarterly Journal of the Geological Society of London, 14, 453—500.Google Scholar
Stegger, P. and Lehmann, G. (1989) The structures of three centers of trivalent iron in alpha-quartz. Physics and Chemistry of Minerals, 16, 401—407.CrossRefGoogle Scholar
Stenina, N.G., Bazarov, L.S., Shcherbakova, M.Y. and Mashkovtsev, R.I. (1984) Structural state and diffusion of impurities in natural quartz of different genesis. Physics and Chemistry of Minerals, 10, 180—186.CrossRefGoogle Scholar
Stevens-Kalceff, M.A. and Phillips, M.R. (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Physical Reviews B, 52, 3122—3134.Google Scholar
Stevens-Kalceff, M.A., Phillips, M.R., Moon, A.R. and Kalceff, W. (2000) Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. Pp. 193—224 in: Cathodoluminescence in geosciences (M. Pagel, V. Barbin, P. Blanc, P. and D. Ohnenstetter, editors.). Springer Verlag, Berlin Heidelberg New York.Google Scholar
Strunz, H. and Tennyson, C. (1982) Mineralogical Tables. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, Germany, 621 pp.Google Scholar
Sucevskaya, T.M., Sinjakova, S.I. and Markova, I.V. (1970) Results of studies about the concentration of ore elements in hydrothermal solutions. Geokhimiya, 6, 693—700. (in Russian).Google Scholar
Suttner, L. and Leininger, R.K. (1972) Comparison of the trace element content of plutonic, volcanic and metamorphic quartz from Southwestern Montana. Geological Society of America Bulletin, 83, 18551862.CrossRefGoogle Scholar
Thomas, R. and Blankenburg, H.-J. (1986) Thermometrische Untersuchungen an Glasein- schliissen in Rhyolithquarzen. Freiberger Forschungsheft C, 402, 69—103.Google Scholar
Van den Kerkhof, A.M. and Hein, U.F. (2001) Fluid inclusion petrography. Lithos, 55, 27—47.CrossRefGoogle Scholar
Van den Kerkhof, A.M., Kronz, A., Simon, K. and Scherer, T. (2004) Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescence and trace element analysis (Bamble sector, Norway). Contributions to Mineralogy and Petrology, 146, 637—652.Google Scholar
Voll, G. (1968) Klastische Mineralien aus den Sedimentserien der Schottischen Highlands und ihr Schicksal bei aufsteigender Regional- und Kontaktmetamorphose. Habilitation thesis, TU Berlin, 206 pp.Google Scholar
Walderhaug, O. (1994) Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf — evidence from fluid inclusions. Journal of Sedimentary Petrology, 64, 311—323.Google Scholar
Walenczak, Z. (1969) Geochemistry of minor elements dispersed in quartz. Archiwum Mineralogiczne, 28, 189—335.Google Scholar
Wark, D.A. and Watson, E.B. (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743—754.CrossRefGoogle Scholar
Weeks, R.A. (1956) Paramagnetic resonance of lattice defects in irradiated quartz. Journal of Applied Physics, 27, 1376—1381.CrossRefGoogle Scholar
Weil, J.A. (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals, 10, 149—165.CrossRefGoogle Scholar
Weil, J.A. (1993) A review of the EPR spectroscopy of the point defects in a-quartz: The decade 1982—1992. Pp. 131—144 in: Physics and Chemistry of SiO2 and the Si—SiO2 interface 2 (C.R. Helms and B.E. Deal, editors). Plenum Press, New York.Google Scholar
Witke, K., Götze, J., RoBler, R., Dietrich, D. and Marx, G. (2004) Raman and cathodoluminescence spectro scopic investigations on Permian fossil wood from Chemnitz — a contribution to the study of the permineralization process. Spectrochimica Acta A, 60, 2947—2956.CrossRefGoogle Scholar
Wright, P.M., Weil, J.A., Buch, T. and Anderson, J.H. (1963) Titanium colour centers in rose quartz. Nature, 197, 246—248.CrossRefGoogle Scholar
Wiinsch, K. (1987) Mineralogische, geochemische und strukturelle Untersuchungen an metamorphogenen Quarzmobilisaten. PhD thesis, TU Bergakademie Freiberg, Germany.Google Scholar
Yardley, B.W., Banks, D.A., Bottrell, S.H. and Diamond, L.W. (1993) Post-metamorphic gold-quartz veins from N.W. Italy: the composition and origin of ore fluids. Mineralogical Magazine, 57, 407—422.CrossRefGoogle Scholar
Young, S.W. (1976) Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks. Journal of Sedimentary Petrology, 46, 595—603.Google Scholar
Zinkernagel, U. (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentology, 8. Schweizerbart’sche Verlagsbuchhandlung, Nagele & Obermiller, Stuttgart, Germany, 69 pp.Google Scholar