Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-21T08:42:58.308Z Has data issue: false hasContentIssue false

The crystal-chemistry of riebeckite, ideally Na2Fe32+ Fe23+Si8O22(OH)2: a multi-technique study

Published online by Cambridge University Press:  28 February 2018

Umberto Susta
Affiliation:
Dipartimento di Scienze, Università di Roma Tre, I-00146 Roma, Italy
Giancarlo Della Ventura*
Affiliation:
Dipartimento di Scienze, Università di Roma Tre, I-00146 Roma, Italy INFN-LNF, I-00044 Frascati, Italy
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Yassir A. Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Maxwell C. Day
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Boriana Mihailova
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
Roberta Oberti
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede di Pavia, I-27100 Pavia, Italy

Abstract

In this work we report on a complete crystal-chemical characterization of a near end-member riebeckite from Malawi, and use the available data to critically compare information obtained from different analytical methods. The sample occurs as well-formed and very large single crystals in pegmatitic rocks. Accurate site-populations were determined by combining single-crystal structure refinement and electron microprobe analysis (EMPA). The Fe3+/Fe2+ ratio was obtained from Mössbauer spectroscopy. Lithium was quantified by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS).

Fourier-Transform Infrared (FTIR) spectra, collected both on powders and single crystals, are presented and discussed. FTIR spectra in the NIR region are also presented for the first time for this amphibole. The FTIR data are compatible with complete local ordering of A cations close to F, and complete Fe2+/Mg disorder at M(1,3). Polarized Raman-scattering data collected from single crystals confirm this conclusion. In addition, it was found that FTIR data collected on powders provide the best agreement with the site occupancies derived from chemical (EMPA and LA-ICP-MS) and crystal-chemical data, possibly because they do not depend on experimental issues such as orientation and polarization.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey Krivovichev

References

Andrut, M., Gottschalk, M., Melzer, S. and Najorka, J. (2000) Lattice vibrational modes in synthetic tremolite-Sr-tremolite and tremolite–richterite solid solutions. Physics and Chemistry of Minerals, 27, 301309.Google Scholar
Apopei, A.I. and Buzgar, N. (2010) The Raman study of amphiboles. Analele Ştiinţifice ale Universităţii “Al. I. Cuza” Iaşi, Geologie, 56, 5783.Google Scholar
Burns, P.C. and Strens, R.G.J. (1966) Infrared study of the hydroxyl bonds in clinoamphiboles. Science, 153, 890892.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rock-forming Minerals, Vol 2B, Double-Chain Silicates, 2nd ed. 764 p., Geological Society, London.Google Scholar
Della Ventura, G. (1992) Recent developments in the synthesis and characterization of amphiboles. Synthesis and crystal-chemistry of richterites. Trends in Mineralogy, 1, 153192.Google Scholar
Della Ventura, G. (2017) The analysis of asbestos minerals using vibrational spectroscopies (FTIR, Raman): crystal-chemistry, identification and environmental applications. Pp. 135–169 in: Mineral fibres: Crystal chemistry, chemical-physical properties, biological interaction and toxicity (Gualtieri, A.F., editor). EMU notes in Mineralogy, Vol. 18.Google Scholar
Della Ventura, G., Robert, J.L. and Bény, J.M. (1991) Tetrahedrally coordinated Ti4+ in synthetic Ti rich potassic richterite: Evidence from XRD, FTIR and Raman studies. American Mineralogist, 76, 11341140.Google Scholar
Della Ventura, G., Robert, J.L., Bény, J.M., Raudsepp, M. and Hawthorne, F.C. (1993) The OH-F substitution in Ti-rich potassium-richterites: Rietveld structure refinement and FTIR and microRaman spectroscopic studies of synthetic amphiboles in the system K2O-Na2O-CaO-MgO-SiO2-TiO2-H2O-HF. American Mineralogist, 78, 980987.Google Scholar
Della Ventura, G., Robert, J.L. and Hawthorne, F.C. (1996) Infrared spectroscopy of synthetic (Ni,Mg,Co)-potassium-richterite. Geochimica and Cosmochimica Acta, 5, 5563.Google Scholar
Della Ventura, G., Robert, J.L., Raudsepp, M., Hawthorne, F.C. and Welch, M. (1997) Site occupancies in synthetic monoclinic amphiboles: Rietveld structure-refinement and infrared spectroscopy of (nickel, magnesium, cobalt)-richterite. American Mineralogist, 82, 291301.Google Scholar
Della Ventura, G., Robert, J.L., Hawthorne, F.C., Raudsepp, M. and Welch, M.D. (1998) Contrasting [6]Al ordering in synthetic Mg- and Co-pargasite. Canadian Mineralogist, 36, 12371244.Google Scholar
Della Ventura, G., Hawthorne, F.C., Robert, J.L., Delbove, F., Welch, M.F. and Raudsepp, M. (1999) Short-range order of cations in synthetic amphiboles along the richterite-pargasite join. European Journal of Mineralogy, 11, 7994.Google Scholar
Della Ventura, G., Hawthorne, F.C., Robert, J.L. and Iezzi, G. (2003) Synthesis and infrared spectroscopy of amphiboles along the tremolite – pargasite join. European Journal of Mineralogy, 15, 341347.Google Scholar
Della Ventura, G., Redhammer, G.J., Iezzi, G., Hawthorne, , Papin, A. and Robert, J.L. (2005) A Mössbauer and FTIR study of synthetic amphiboles along the magnesioriebeckite – ferri-clinoholmquistite join. Physics and Chemistry of Minerals, 32, 103113.Google Scholar
Della Ventura, G., Redhammer, G., Robert, J.L., Sergent, J., Iezzi, G. and Cavallo, A. (2016) Crystal-chemistry of synthetic amphiboles along the join richterite - ferro-richterite: a combined spectroscopic (FTIR, Mössbauer), XRPD and microchemical study. Canadian Mineralogist, 54, 97114.Google Scholar
Dowty, E. (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals: I. calculations on ideal silicate aluminate-germanate structural units. Physics and Chemistry of Minerals, 14, 8093.Google Scholar
Ernst, W.G. (1962) Synthesis, stability relations and occurrence of riebeckite and riebeckite – arfvedsonite solid solutions. Journal of Geology, 70, 689736.Google Scholar
Ernst, W.G. (1968) Amphiboles. Springer-Verlag, Berlin.Google Scholar
Ernst, W.G. and Wai, M. (1970) Mössbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles. American Mineralogist, 55, 12261258.Google Scholar
Fornero, E., Allegrina, M., Rinaudo, C., Mazziotti-Tagliani, S. and Gianfagna, A. (2008) Micro-Raman spectroscopy applied on oriented crystals of fluoro-edenite amphibole. Periodico di Mineralogia, 77, 214.Google Scholar
Gasharova, B., Mihailova, B. and Konstantinov, L. (1997) Raman spectra of various types of tourmalines. European Journal of Mineralogy, 9, 935940.Google Scholar
Gillet, P., Reynard, B. and Tequi, C. (1989) Thermodynamic properties of glaucophane. New data from calorimetric and spectroscopic measurements. Physics and Chemistry of Minerals, 16, 659667.Google Scholar
Guastoni, A., Nestola, F. and Giaretta, A. (2009) Mineral chemistry and alteration of rare earth element (REE) carbonates from alkaline pegmatites of Mount Malosa, Malawi. American Mineralogist, 94, 12161222.Google Scholar
Guastoni, A., Kondo, D. and Nestola, F. (2010) Bastnäsite-(Ce) and Parisite-(Ce) from Mt. Malosa, Malawi. Gems & Gemology, 46, 4246.Google Scholar
Gunter, M.E., Belluso, E. and Mottana, A. (2007) Amphiboles: Environmental and health concerns. Pp. 453516 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hafner, S.S. and Ghose, S. (1971) Iron and magnesium distribution in cummingtonites, (Fe,Mg)7Si8O22(OH)2. Zeitschrift für Kristallographie, 133, 301326.Google Scholar
Hawthorne, F.C. (1978) The crystal structure and site chemistry of fluor-riebeckite. Canadian Mineralogist, 16, 187194.Google Scholar
Hawthorne, F.C. (1983) The crystal-chemistry of the amphiboles. Canadian Mineralogist, 21, 173480.Google Scholar
Hawthorne, F.C. and Della Ventura, G. (2007) Short-range order in amphiboles. Reviews in Mineralogy and Geochemistry, 67, 173222.Google Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal Chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Bottazzi, P. and Czamanske, G.K. (1993) Li: An important component in igneous alkali amphiboles. American Mineralogist, 78, 733745.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Cannillo, E. and Smelik, E.A. (1994) The mechanism of [6]Li incorporation in amphiboles. American Mineralogist, 78, 443451Google Scholar
Hawthorne, F.C., Oberti, R. and Sardone, N. (1996 a) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order. Canadian Mineralogist, 34, 577593.Google Scholar
Hawthorne, F.C., Della Ventura, G. and Robert., J.L. (1996 b) Short-range order and long-range order in amphiboles: A model for the interpretation of infrared spectra in the principal OH-stretching region. The Geochemical Society, Special Publication No. 5. 4954.Google Scholar
Hawthorne, F.C., Welch, M.D., Della Ventura, G., Liu, S., Robert, J.L. and Jenkins, D.M. (2000) Short-range order in synthetic aluminous tremolites: An infrared and triple-quantum MAS NMR study. American Mineralogist, 85, 17161724.Google Scholar
Iezzi, G., Cámara, F., Della Ventura, G., Oberti, R., Pedrazzi, G. and Robert, J.L. (2004) Synthesis, crystal structure and crystal-chemistry of ferri-clinoholmquistite, Li2Mg3Fe3+2Si8O22(OH)2. Physics and Chemistry of Minerals, 31, 375385.Google Scholar
Iezzi, G., Della Ventura, G., Hawthorne, F.C., Pedrazzi, G., Robert, J.-L. and Novembre, D. (2005) The (Mg,Fe2+) substitution in ferri-clinoholmquistite, □Li2 (Mg,Fe2+)3Fe3+2Si8O22(OH)2. European Journal of Mineralogy, 17, 733740.Google Scholar
Ishida, K. (1989) Infrared study of manganoan alkali-calcic amphiboles. Mineralogical Journal, 14, 255265.Google Scholar
Ishida, K. (1990 a) Infrared spectra of alkali amphiboles of the glaucophane-riebeckite series and their relation to chemical composition. Mineralogical Journal, 15, 147161.Google Scholar
Ishida, K. (1990 b) Identification of infrared OH-librational bands of talc-willemseite solid-solutions and Al(VI)-free amphiboles through deuteration. Mineralogical Journal, 15, 93104.Google Scholar
Ishida, K. (1998) Cation disordering in heat-treated anthophyllites through oxidation and dehydrogenation. Physics and Chemistry of Minerals, 25, 160167.Google Scholar
Ishida, K., Jenkins, D.M. and Hawthorne., F.C. (2008) Mid-IR bands of synthetic calcic amphiboles of tremolite-pargasite series and of natural calcic amphiboles. American Mineralogist, 93, 11121118.Google Scholar
Kloprogge, J.T., Case, M.H. and Frost, R.L. (2001) Raman microscopic study of the Li amphibole holmquistite, from the Martin Marietta Quarry, Bessemer City, NC, USA. Mineralogical Magazine, 65, 775785.Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G.M. and Stalke, D. (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 310.Google Scholar
Kuzmany, H. (2009) Solid-state spectroscopy. Springer, Berlin.Google Scholar
Law, A.D. (1976) A model for the investigation of Hydroxyl spectra of amphiboles. Pp. 677686 in: The Physics and Chemistry of Minerals and Rocks (Strens, R.G.J., editor).Google Scholar
Lazarev, A.N. (1972) Vibrational Spectra and Structure of Silicates. Consultants Bureau (Plenum Publishing Company Ltd.), New York, London, 302 pp.Google Scholar
Leissner, L., Schlüter, J., Horn, I. and Mihailova, B. (2015) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. American Mineralogist, 100, 26822694.Google Scholar
Lewis, I.R., Chaffin, N.C., Gunter, M.E. and Griffiths, P.R. (1996) Vibrational spectroscopic studies of asbestos and comparison of suitability for remote analysis. Spectrochimica Acta part A, 52, 315328.Google Scholar
Mustard, J.F. (1992) Chemical analysis of actinolite from reflectance spectra. American Mineralogist, 77, 345358.Google Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Càmara, F. (2007) Long-range order in amphiboles. Pp. 125172 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Oberti, R., Della Ventura, G., Boiocchi, M., Zanetti, A. and Hawthorne, F.C. (2017) The crystal chemistry of oxo-mangani-leakeite and mangano-mangani-ungarettiite from the Hoskins mine and their apparent but impossible solid-solution – An XRD and FTIR study. Mineralogical Magazine, 81, 707722.Google Scholar
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 25082518.Google Scholar
Rancourt, D.G. and Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research B, 58, 8597.Google Scholar
Rancourt, D.G., McDonald, A.M., Lalonde, A.E. and Ping, J.Y. (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 17.Google Scholar
Rancourt, D.G., Ping, J.Y., Boukili, B. and Robert, J.L. (1996) Octahedral-site Fe2+ quadrupole splitting distributions from Mössbauer spectroscopy along (OH, F)-annite join. Physics and Chemistry of Minerals, 23, 6371.Google Scholar
Reece, J.J., Redfern, S.A.T., Welch, M.D., Henderson, C.M.B. and McCammon, C.A. (2002) Temperature-dependent Fe2+–Mn2+ order–disorder behaviour in amphiboles. Physics and Chemistry of Minerals, 29, 562570.Google Scholar
Rinaudo, C., Belluso, E. and Gastaldi, D. (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineralogical Magazine, 68, 455465.Google Scholar
Rinaudo, C., Cairo, S., Gastaldi, D., Gianfagna, A., Mazziotti Tagliani, S., Tosi, G. and Conti, C. (2006) Characterization of fluoro-edenite by μ-Raman and μ-FTIR spectroscopy. Mineralogical Magazine, 70, 291298.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL Acta Crystallographica, C71, 38.Google Scholar
Skogby, H. and Rossman, G.R. (1991) The intensity of amphibole OH bands in the infrared absorption spectrum. Physics and Chemistry of Minerals, 18, 6468.Google Scholar
Strens, R.S.J. (1966) Infrared study of cation ordering and clustering in some (Fe, Mg) amphibole solid solutions. Chemical Communications, 519, 159520Google Scholar
Wang, A., Dhamelincourt, P. and Turrell, G. (1988 a) Infrared and low-temperature micro-Raman spectra of the OH stretching vibrations in cummingtonite. Applied Spectroscopy, 42, 14511457.Google Scholar
Wang, A., Dhamelincourt, P. and Turrell, G. (1988 b) Raman microspectroscopic study of the cation distribution in amphiboles. Applied Spectroscopy, 42, 14411450.Google Scholar
Zoltai, T. (1981) Amphibole asbestos mineralogy. Pp. 237278 in: Amphiboles and other hydrous pyriboles. Mineralogy. (Veblen, D.R., editor). Reviews in Mineralogy, 9A. Mineralogical Society of America, Washington DC.Google Scholar
Supplementary material: File

Susta et al. supplementary material

Susta et al. supplementary material

Download Susta et al. supplementary material(File)
File 53.2 KB