Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T17:59:21.564Z Has data issue: false hasContentIssue false

Redcanyonite, (NH4)2Mn[(UO2)4O4(SO4)2](H2O)4, a new zippeite-group mineral from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  15 May 2018

Travis A. Olds*
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Anthony R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Peter C. Burns
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
Barbara P. Nash
Affiliation:
Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84108, USA
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
Timothy P. Rose
Affiliation:
Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Shawn M. Carlson
Affiliation:
245 Jule Lake Road, Crystal Falls, MI 49920, USA
*

Abstract

Redcanyonite (IMA2016-082), (NH4)2Mn[(UO2)4O4(SO4)2](H2O)4, occurs underground in the Blue Lizard mine, Red Canyon, White Canyon district, San Juan County, Utah, USA. It occurs with natrozippeite, brochantite, devilline, posnjakite, johannite, gypsum, bobcookite, pickeringite, pentahydrite and the NH4-analogue of zippeite: ammoniozippeite. Redcanyonite occurs as radial aggregates of red–orange needles and blades individually reaching up to 0.2 mm long, with aggregates measuring up to 1 mm in diameter. Crystals are flattened on {010} and elongated along [100], exhibit perfect cleavage on {010}, and exhibit the forms {010}, {001}, {101} and {10$\bar{1}$}. Twinning is ubiquitous, by 180° rotation on [100]. Redcanyonite is translucent with a pale orange streak, is non-fluorescent, has a Mohs hardness of 2, and has brittle tenacity with uneven fracture. Optically, redcanyonite is biaxial (+), α = 1.725(3), β = 1.755(3), γ = 1.850(5) (white light); 2V (meas.) = 60(2)°, 2V (calc.) = 61.3°; and dispersion is r < v, very strong. Pleochroism is: X = orange, Y = yellow and Z = orange; Y << X < Z. The optical orientation is X = b, Yc*, Za. The empirical formula is (NH4)2.02(Mn0.49Cu0.09Zn0.06)Σ0.64H+0.72[(UO2)4O4(S0.99P0.01O4)2](H2O)4, based on 4 U and 24 O apfu. Redcanyonite is monoclinic, C2/m, a = 8.6572(17), b = 14.155(3), c = 8.8430(19) Å, β = 104.117(18)°, V = 1050.9(4) Å3 and Z = 2. The structure was refined to R1 = 0.0382 for 1079 reflections with Iobs > 3σI. Uranyl oxo-sulfate sheets in redcanyonite adopt the well-known zippeite topology, which consists of zigzag chains of uranyl pentagonal bipyramids linked by sulfate tetrahedra to form sheets. The sheets are linked to each other through bonds to interlayer NH4+ groups and octahedrally coordinated Mn2+, and by hydrogen bonds from H2O groups. Redcanyonite is named for Red Canyon in southeast Utah, USA.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Giancarlo Della Ventura

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.Google Scholar
Brugger, J., Meisser, N. and Burns, P.C. (2003) Contribution to the mineralogy of acid drainage of uranium minerals: marécottite and the zippeite-group. American Mineralogist, 88, 676685.Google Scholar
Brugger, J., Wallwork, K.S., Meisser, N., Pring, A., Ondruš, P. and Čejka, J. (2006) Pseudojohannite from Jáchymov, Musonoï and La Creusaz: A new member of the zippeite-group. American Mineralogist, 91, 929936.Google Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Canadian Mineralogist, 43, 18391894.Google Scholar
Burns, P.C., Deely, K.M. and Hayden, L.A. (2003) The crystal chemistry of the zippeite group. Canadian Mineralogist, 41, 687706.Google Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Ewing, R.C., editors). Reviews in Mineralogy & Geochemistry, 38. Mineralogical Society of America, Washington DC.Google Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Miscellaneous Publication 93-3, Utah Geological Survey, Salt Lake City, Utah, USA.Google Scholar
Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91179 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Ewing, R.C., editors). Reviews in Mineralogy & Geochemistry, 38. Mineralogical Society of America, Washington DC.Google Scholar
Frondel, C., Ito, J., Honea, R.M. and Weeks, A.M. (1976) Mineralogy of the zippeite group. Canadian Mineralogist, 14, 429436.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R., González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.Google Scholar
Garrels, R.M. and Christ, C.L. (1959) Behavior of uranium minerals during oxidation. Pp 8189 in: Geochemistry and Mineralogy of the Colorado Plateau (Garrels, R.M. and Larsen, E.S., editors). Uranium Ores. U.S. Geol. Survey Professional Paper, 320.Google Scholar
Gunter, M.E., Weaver, R., Bandli, B.R., Bloss, F.D., Evans, S.H. and Su, S.C. (2004) Results from a McCrone spindle stage short course, a new version of ECXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.Google Scholar
Hazen, R.M., Grew, E.S., Origlieri, M.J. and Downs, R.T. (2017) On the mineralogy of the “Anthropocene Epoch”. American Mineralogist, 102, 595611.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015) Bobcookite, NaAl(UO2)2(SO4)4·18H2O and wetherillite, Na2Mg(UO2)2(SO4)4·18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.Google Scholar
Kampf, A.R., Plášil, J., Olds, T.A., Nash, B.P. and Marty, J. (2018) Ammoniozippeite, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, and the Burro mine, San Miguel County, Colorado, USA. The Canadian Mineralogist, 56, 235–245.Google Scholar
Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547569.Google Scholar
Larsen, E.S. (1921) The Microscopic Determination of the Nonopaque Minerals. U.S. Geological Survey, Bulletin 679.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋯O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 13071324.Google Scholar
Peeters, M.O., Vochten, R. and Blaton, N. (2008) The crystal structures of synthetic potassium-transition metal zippeite-group phases. Canadian Mineralogist, 46, 173182.Google Scholar
Pekov, I.V., Krivovichev, S.V., Yapaskurt, V.O., Chukanov, N.V. and Belakovskiy, D.I. (2014) Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia. American Mineralogist, 99, 17831787.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Plášil, J. (2014) Oxidation-hydration weathering of uraninite: The current state-of-knowledge. Journal of Geosciences, 59, 99114.Google Scholar
Plášil, J. (2015) Crystal structure refinement of pseudojohannite, Cu3(OH)2 [(UO2)4O4(SO4)2](H2O)12, from the type locality – Jáchymov, Czech Republic. Journal of Geosciences, 60, 123127.Google Scholar
Plášil, J. and Škoda, R. (2015) New crystal-chemical data for marécottite. Mineralogical Magazine, 79, 649660.Google Scholar
Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jelička, J. and Novák, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U–O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.Google Scholar
Plášil, J., Dušek, M., Novák, M., Čejka, J., Císařová, I. and Škoda, R. (2011 a) Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. American Mineralogist, 96, 983991.Google Scholar
Plášil, J., Mills, S.J., Fejfarová, K., Dušek, M., Novák, M., Škoda, R., Čejka, J. and Sejkora, J. (2011 b) The crystal structure of natural zippeite, K1.85H+0.15[(UO2)4O2(SO4)2(OH)2](H2O)4, from Jáchymov, Czech Republic. Canadian Mineralogist, 49, 10891103.Google Scholar
Plášil, J., Fejfarová, K., Škoda, R., Dušek, M., Čejka, J. and Marty, J. (2013) The crystal structure of magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle Mine, San Juan County, Utah (U.S.A.). Mineralogy and Petrology, 107, 211219.Google Scholar
Plášil, J., Dušek, M., Čejka, J. and Sejkora, J. (2014) The crystal structure of rabejacite, the Ca2+-dominant member of the zippeite group. Mineralogical Magazine, 57, 12491263.Google Scholar
Plášil, J., Škácha, P., Sejkora, J., Kampf, A.R., Škoda, R., Čejka, J., Hloušek, J., Kasatkin, A.V., Pavlíček, R. and Babka, K. (2017) Plavnoite, a new K–Mn member of the zippeite group from Jáchymov, Czech Republic. European Journal of Mineralogy, 29, 117128.Google Scholar
Plášil, J., Petříček, V., Mills, S.J., Favreau, G. and Galea-Clolus, V. (2018) Zippeite from Cap Garonne, France: an example of reticular twinning. Zeitschrift für Kristallographie-Crystalline Materials, 233(12), 861865.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California.Google Scholar
Sheldrick, G.M. (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Supplementary material: File

Olds et al. supplementary material

Olds et al. supplementary material

Download Olds et al. supplementary material(File)
File 149.3 KB