Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T05:39:02.787Z Has data issue: false hasContentIssue false

Secondary ilvaite in a dolerite dyke from Rogaland, SW Norway

Published online by Cambridge University Press:  05 July 2018

Michael Barton
Affiliation:
Vening-Meinesz Laboratory, Department of Geochemistry, Institute for Earth Sciences, State University of Utrecht, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
Manfred J. van Bergen
Affiliation:
Vening-Meinesz Laboratory, Department of Geochemistry, Institute for Earth Sciences, State University of Utrecht, Budapestlaan 4, 3584 CD Utrecht, The Netherlands

Abstract

Ilvaite is an alteration product of carbonate, which itself replaced clinopyroxene, in a Precambrian tholeiitic dyke. Additional secondary minerals are ferroactinolite, cummingtonite, chlorite, biotite, prehnite, and epidote. Microprobe analyses demonstrate that the ilvaite is close to the ideal end-member composition [CaFe22+Fe3+Si2O8 (OH)] and that only cummingtonites, Mg/(Mg+Fe2+) 0.77–0.39, and carbonates (solid solutions between calcite and dolomite, dolomite and ankerite, magnesite and siderite) show significant compositional variations. It is estimated that ilvaite formed at temperatures < 470 °C and at pressures < 2 kbar, probably during a low-grade metamorphic event (or events) associated with the Caledonian orogeny. The fluids involved in the alteration process contained both CO2 and H2O, initial fluids probably being richer in CO2 than later ones. Ilvaite may be more common in hydrothermally altered igneous rocks than previously supposed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antun, P. (1956) Géologie et pétrologie des dolérites de la région d’Egersund (Norvège Meridionale). Ph.D. thesis, Universite de Liège.Google Scholar
Baker, G. (1953) Am. Mineral. 38, 840.Google Scholar
Barley, M. E. (1982) Mineral Mag. 46, 401.CrossRefGoogle Scholar
Bartholomé, P., and Dimanche, F. (1967) Ann. Soc. Geol. Belgique. 90, 533.Google Scholar
Burt, D. M. (1971a) Carnegie Inst. Washington Yearb. 70, 185.Google Scholar
Burt, D. M. (1971b) Ibid. 70, 189.Google Scholar
Cameron, K. L. (1975) Am. Mineral. 60, 375.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rock Forming Minerals, 3, Longmans, London.Google Scholar
Desborough, G. A., and Amos, D. H. (1961) Am. Mineral. 46, 1509.Google Scholar
Dietrich, V. (1972) Schweiz. Mineral. Petrogr. Mitt. 52, 57.Google Scholar
Douglas, J. A. V. (1964) Meddels. Gronland. 164, 1.Google Scholar
Fonteilles, M. (1962) J. Fac. Sci. Univ. Tokyo. 14, 152.Google Scholar
Gustafson, W. I. (1974) J. Petrol. 15, 455.CrossRefGoogle Scholar
Hermans, G. A. E. M., Tobi, A. C., Poorter, R. P. E., and Maijer, C. (1975) Norges Geol. Unders. 318, 51.Google Scholar
Hotz, P. E. (1953) Geol. Soc. Am. Bull. 64, 675.CrossRefGoogle Scholar
Klein, C” Jr. (1968) J. Petrol. 9, 281.CrossRefGoogle Scholar
Leake, B. E. (1978) Mineral. Mag. 42, 533.CrossRefGoogle Scholar
Leonard, B. F., Hildebrand, F. A., and Vlisidis, A. C. (1962) In Petrologic Studies (Engel, A. E. J., James, H. L., and B. F., Leonard, eds.) Geol. Soc. Am. Buddington Volume, 523.Google Scholar
Machairas, G., and Blais, R. (1966) Bull. Soc.fr. Mineral. Crystallogr. 89, 372.Google Scholar
Maijer, C. (1980) Abstracts, International Colloquium on the High-grade Metamorphic Precambrian and its Intrusive Masses, Utrecht.Google Scholar
Naslund, H. R., Hughes, J. M., and Birnie, R. W. (1983) Am. Mineral. 68, 1004.Google Scholar
Pasteels, P., and Michot, J. (1975) Norsk Geol. Tidsskr. 55, 111.Google Scholar
Plimer, I. R., and Ashley, P. M. (1978) Mineral. Mag. 42, 85.CrossRefGoogle Scholar
Poorter, R. P. E. (1972) Phys. Earth Planet. Int. 5, 167.CrossRefGoogle Scholar
Priem, H. N. A. (1980) Abstracts, International Colloquium on the High-grade Metamorphic Precambrian and its Intrusive Masses, Utrecht.Google Scholar
Ramdohr, P. (1927) Neues Jahrb. Mineral. Beil. 55A, 333.Google Scholar
Sauter, P. C. C. (1983) Metamorphism of Siliceous Dolomites in the High-grade Precambrian of Rogaland, S.W. Norway Ph.D. thesis, University of Utrecht.Google Scholar
Sauter, P. C. C. Hermans, G. A. E. M., Jansen, J. B. H., Maijer, C., Spits, P., and Wegelin, A. (1983) Norges Geol. Unders. (in press).Google Scholar
Storetvedt, K. M., and Gidskehaug, A. (1968) Norsk Geol. Tidsskr. 48, 121.Google Scholar
Swanenberg, H. E. C. (1980) Fluid Inclusions in High- grade Metamorphic Rocks from S.W Norway. Ph.D. thesis, University of Utrecht.Google Scholar
Verkaeren, J. (1974) Mem. Inst. Geol. Univ. Louvain, 27, Part 2, 1169.Google Scholar
Verschure, R. H. (1981) Terra Cognita, 2, 64.Google Scholar
Verschure, R. H., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Maijer, C., Priem, H. N. A., and Verdurmen, E. A. Th. (1980) Contrib. Mineral. Petrol. 74, 245.CrossRefGoogle Scholar
Versteeve, A. J. (1975) Norges Geol. Vnders. 318, 1.Google Scholar
Wager, L. R., Vincent, E. A., and Smales, A. A. (1957) Econ. Geol. 52, 855.CrossRefGoogle Scholar
Widens, J. B. W., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Priem, H. N. A., Verdurmen, E. A. Th., and Verschure, R. H. (1981) Norges Geol. Vnders. 359, 1.Google Scholar