Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T05:07:06.050Z Has data issue: false hasContentIssue false

Unique thallium mineralization in the fumaroles of the Tolbachik volcano, Kamchatka Peninsula, Russia. II. Karpovite, Tl2VO(SO4)2(H2O)

Published online by Cambridge University Press:  05 July 2018

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Lidiya P. Vergasova
Affiliation:
Institute of Volcanology, Russian Academy of Sciences, Bulvar Piypa 9, 683006 Petropavlovsk-Kamchatskiy, Russia
Yuri L. Kretser
Affiliation:
V.G. Khlopin Radium Institute, Roentgen Street 1, 197101 St Petersburg, Russia
Yuri S. Polekhovsky
Affiliation:
Department of Mineral Deposits, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Stanislav K. Filatov
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Sergey V. Krivovichev
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia Institute of Silicate Chemistry, Russian Academy of Sciences, Makarova Emb. 6, 199034 St Petersburg, Russia
*

Abstract

Karpovite, ideally Tl2VO(SO4)2(H2O), was found in a fumarole of the 1st cinder cone of the North Breach of the Great Fissure Tolbachik volcano eruption (1975–1976), Kamchatka Peninsula, Russia. Karpovite occurs as bundles of white, needle-like crystals associated with shcherbinaite, pauflerite, bobjonesite, markhininite, evdokimovite and microcrystalline Mg, Al, Fe and Na sulfates. Karpovite is monoclinic, P21, a = 4.6524(4), b = 11.0757(9), c = 9.3876(7) Å , β = 98.353(2)º, V = 478.60(7) Å3, Z = 2 (from single-crystal diffraction data). The eight strongest lines of the X-ray powder diffraction pattern are (I/d/hkl): 64/4.289/012, 81/4.253/110, 38/3.683/111, 47/3.557/022, 100/3.438/21, 52/2.982/013, 59/2.945/112, 54/2.354/132. The chemical composition determined by the electron microprobe analysis is (wt.%) Tl2O 61.43, VO2 11.53, SO3 23.55, H2O 2.61, total 99.12. The empirical formula (calculated on the basis of 10 O a.p.f.u.) is Tl2.00V0.96S2.03O9(H2O). The simplified formula of karpovite is Tl2VO(SO4)2(H2O), which requires Tl2O 61.93, VO2 12.09, SO3 23.34, H2O 2.62 total 100.00 wt.%. The crystal structure was solved by direct methods and refined to R1 = 0.026 for 4196 independent observed reflections. The structure contains two symmetrically independent Tl+ sites, one V4+ site and two S6+ sites. VO5H2O octahedra and SO4 tetrahedra link together by sharing corners to form kröhnkite-type stripes parallel to the a axis with their planes oriented parallel to (021) and (02). Tl+ cations are located between the chains, linked into a three-dimensional structure. The new mineral is named in honour of Professor Gennadii Alexandrovich Karpov (b. 1938), volcanologist at the Institute of Volcanology, Russian Academy of Sciences, Petropavlovsk-Kamchatskii, Kamchatka Peninsula, Russia.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balić-Žunić, T. and Vicković, I. (1996) IVTON – program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography, 29, 305306.CrossRefGoogle Scholar
Birnie, R.W. and Hughes, J.M. (1979) Stoiberite, Cu5V2O10, a new copper vanadate from Izalco volcano E. Salvador, Central America. American Mineralogist, 64, 941944.Google Scholar
Borisenko, L.F. (1972) The new mineral – shcherbinaite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 101, 464. Brese, N. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Fleck, M. and Kolitsch, U. (2003) Natural and synthetic compounds with kröhnkite-type chains: an update. Zeitschrift für Kristallographie, 218, 553567.Google Scholar
Fleck, M., Kolitsch, U. and Hertweck, B. (2002) Natural and synthetic compounds with kröhnkite-type chains: review and classification. Zeitschrift für Kristallographie, 217, 435443.Google Scholar
Harrison, W.T.A., Lim, S.C., Vaughey, J.T., Jacobson, A.J., Goshorn, D.P. and Johnson, J.W. (1994) Synthesis, structure, and magnetism of Ba2VO(PO4)2·(H2O), a new barium vanadium(IV) phosphate hydrate. Journal of Solid State Chemistry, 113, 444447.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112. in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Hughes, J.M. and Birnie, R.W. (1980) Ziesite, b- Cu2V2O7, a new copper vanadate and fumarole temperature indicator. American Mineralogist, 65, 11461149.Google Scholar
Hughes, J.M. and Finger, L.W. (1983) The crystal chemistry of shcherbinaite, naturally occurring V2O5. American Mineralogist, 68, 12201222.Google Scholar
Hughes, J.M. and Hadidiacos, C.G. (1985) Fingerite, Cu11O2(VO4)6, a new vanadium sublimate from Izalco volcano E. Salvador: descriptive mineralogy. American Mineralogist, 70, 193196.Google Scholar
Hughes, J.M., Christian, B.S., Finger, L.W. and Malinconico, L.L. (1987a) Mcbirneyite, Cu3(VO4)2, a new sublimate mineral from the fumaroles of Izalco volcano E. Salvador. Journal of Volcanological Geothermal Research, 33, 183190.CrossRefGoogle Scholar
Hughes, J.M., Starkey, S.J., Malinconico, M.L. and Malin conico, L. L . (1987b) Lyonsite , Cu2+ 3 Fe3+ 4 (VO4)3– 6 , a new fumarolic sublimate from Izalco volcano E. Salvador: descriptive mineralogy and crystal structure. American Mineralogist, 72, 10001005.Google Scholar
Hughes, J.M., Drexler, J.W., Campana, C.F. and Malinconico, M.L. (1988) Howardevansite, NaCu2+Fe3+ 2 (VO4)3– 3 , a new fumarolic sublimate from Izalco volcano E. Salvador: descriptive mineralogy and crystal structure. American Mineralogist, 73, 181186.Google Scholar
Ishigami, H., Sumita, M. and Sato, S. (1999) Phase transition in K2Fe(SO4)2·2H2O. Ferroelectrics, 229, 109114.CrossRefGoogle Scholar
Kang, H.-Y., Lee, W.-C. and Wang, S.-L. (1992) Hydrothermal synthesis and structural characterization of four layered vanadyl (IV) phosphate hydrates A(VO)2(PO4)2·4H2O (A= Co, Ca, Sr, Pb). Inorganic Chemistry, 31, 47434748.CrossRefGoogle Scholar
Kim, Y.H., Lee, K.-S., Kwon, Y.-U. and Han, O.H. (1996) K(VO)(SeO3)2H: a new one-dimensional compound with strong hydrogen bonding. Inorganic Chemistry, 35, 73947398.CrossRefGoogle Scholar
Krause, W., Blass, G. and Effenberger, H. (1999) Schäferite, a new vanadium garnet from the Bellberg volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie, Monatshefte, 1999, 123124.Google Scholar
Krivovichev, S.V. (2013) Crystal chemistry of uranium oxides and minerals . Pp. 611640. in: Comprehensive Inorganic Chemistry II. Volume 2: Transition Elements, Lanthanides and Actinides (Reedijk, J. and Poeppelmeier, K. (editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2003) Crystal chemistry of uranyl molybdates. VIII. Crystal structures of Na3 T l 3((UO2 ) (MoO4 ) 4 ) , Na13–xTl3+x((UO2)(MoO4)3)4(H2O)6+x (x = 0.1), Na3Tl5 ((UO2) (MoO4)3) 2(H2O) 3 and Na2((UO2)(MoO4)2)(H2O)4. The Canadian Mineralogist, 41, 707719.CrossRefGoogle Scholar
Krivovichev, S.V., Locock, A.J. and Burns, P.C. (2005) Lone electron pair stereoactivity, cation arrangements and distortion of heteropolyhedral sheets in the structures of Tl2((UO2)(AO4)2) (A= Cr, Mo). Zeitschrift für Kristallographie, 220, 1018.Google Scholar
Krivovichev, S.V., Vergasova, L.P., Britvin, S.N., Filatov, S.K., Kahlenberg, V. and Ananiev, V.V. (2007) Pauflerite, b-(VO(SO4)), a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. The Canadian Mineralogist, 45, 921927.CrossRefGoogle Scholar
Locock, A.J. and Burns, P.C. (2004) Revised Tl(I)–O bond valence parameters and the structures of thallous dichromate and thallous uranyl phosphate hydrate. Zeitschrift für Kristallographie, 219, 259266.Google Scholar
Makovicky, E. and Balić-Žunić, T. (1998) New measure of distortion for coordination polyhedra. Acta Crystallographica, B54, 766773.CrossRefGoogle Scholar
Marsh, R.E. (1995) Some thoughts on choosing the correct space group. Acta Crystallographica, B51, 897907.CrossRefGoogle Scholar
Pekov, I.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Y.S. and Murashko, M.N. (2013a) Starovaite, KCu5O(VO4)3, a new mineral from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 25, 9196.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Y.S., Fadeeva, O.A. and Pushcharovsky, D.Y. (2013b) Yaroshevskite, Cu9O2(VO4)4Cl2, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineralogical Magazine, 77, 107116.CrossRefGoogle Scholar
Robinson, P.D., Hughes, J.M. and Malinconico, M.L. (1987) Blossite, a-Cu2[V2O7], a new fumarolic sublimate from Izalco volcano, El Salvador. American Mineralogist, 72, 397400.Google Scholar
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000) Crystal-chemical aspects of vanadium: polyhedral geometries, characteristic bond valences and polymerization of (VOn) polyhedra. Chemistry of Materials, 12, 12481259.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C., Huminicki, D.M.C., Haynes, P., Grice, J.D. and Evans, H.T., Jr (2003) Bobjonesite, V4+O(SO4)(H2O)3, a new mineral species from Temple Mountain, Emery County, Utah, USA. The Canadian Mineralogist, 41, 8390.CrossRefGoogle Scholar
Severen, M.-C., Piquemal, J.-P. and Parisel, O. (2009) Beyond holo/hemidirectionality in Pb(II) complexes: can the valence lone pair be bisdirected? Chemical Physics Letters, 478, 1719.Google Scholar
Shimony-Livny, L., Glusker, J.P. and Bock, C.W. (1998) Lone pair functionality in divalent lead compounds. Inorganic Chemistry, 37, 18531867.CrossRefGoogle Scholar
Siidra, O.I., Britvin, S.N. and Krivovichev, S.V. (2009) Hydroxocentered [(OH)Tl3]2+ triangle as a building unit in thallium compounds: synthesis and crystal structure of Tl4(OH)2CO3 . Zeitschrift für Kristallographie, 224, 563567.CrossRefGoogle Scholar
Siidra, O.I., Britvin, S.N., Krivovichev, S.V. and Depmeier, W. (2010) Polytypism of layered alkaline hydroxides: crystal structure of TlOH. Zeitschrift für anorganische und allgemeine Chemie, 636, 595599.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Krivovichev, S.V., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014a) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia. I. Markhininite, TlBi(SO4)2 . Mineralogical Magazine, 78, 16871698.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014b) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Penins u l a , Russia. III. Evdokimo vite , Tl4(VO)3(SO4)5(H2O)5. Mineralogical Magazine, 78, 17111724.CrossRefGoogle Scholar
Vergasova, L.P., Filatov, S.K., Semenova, T.F. and Anan’ev, V.V. (1990) Leningradite PbCu3(VO4)2Cl2 – a new mineral from volcanic sublimates. Doklady Akademii Nauk SSSR, 310, 14341437.Google Scholar
Vergasova, L.P., Starova, G.L., Filatov, S.K. and Anan’ev, V . V . (1998) Averievite Cu5(VO4)2O2·nMX – a new mineral of volcanic exhalations. Doklady Rossiiskoy Akademii Nauk, 359, 804807.Google Scholar
Vergasova, L.P., Siidra, O.I., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2013) Karpovite, IMA 2013-040. CNMNC Newsletter No. 17, October 2013, page 2999; Mineralogical Magazine, 77, 29973005.Google Scholar
Wadewitz, C. and Müller-Buschbaum, H. (1996) Strukturelle Unterschiede zwischen Sr2(VO)(AsO4)2 und Ba2(VO)(PO4)2 . Zeitschrift für Naturforschung, B51, 12901294.Google Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Boldyreva, M.M., Pushcharovsky, D.Y. and Nekrasov, A.N. (2011) Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 23, 475481.CrossRefGoogle Scholar
Zubkov, V.G., Tyutyunnik, A.P., Berger, I.F., Krasil’nikov, V.N., Perelyaeva, L.A. and Baklanova, I.V. (2007) Crystal structure and spectroscopic properties of A(VO2(SO4)(H2O)2)·(H2O) (A= K, Rb, Tl, NH4) compounds. Russian Journal of Inorganic Chemistry, 52, 14151423.CrossRefGoogle Scholar