Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:30:47.830Z Has data issue: false hasContentIssue false

Atomistic Modeling of an MFM ferroelectric capacitor made of HfO2:Si

Published online by Cambridge University Press:  28 August 2019

P. Blaise*
Affiliation:
Univ. Grenoble Alpes, CEA, LETI, 38000Grenoble, France
*
*(Email: phblai@free.fr)
Get access

Abstract:

Using ab initio simulation, we study a ferroelectric layer of a few nanometers made of hafnia (HfO2) under the influence of Si doping with TiN electrodes. We evaluate the orthorhombic phase of Pca21 symmetry, its ferroelectric switching and the incidence of doping with silicon. We show that the ferroelectric switching can involve a 90° characteristic angle with corresponding activation energy which is lowered by a factor three due to Si doping at 3% at. A full MFM (Metal-Ferroelectric-Metal) model is derived in order to simulate finite-size effects. This model is compatible with a reversal of a polar HfO2:Si with a (111) preferential orientation. Validity and usefulness of such a model are discussed for ferroelectric devices optimization.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U., and Böttger, U., Applied Physics Letter 99, 102903 (2011)CrossRefGoogle Scholar
Müller, J., Polakowski, P., Riedel, S., Mueller, S., in Proceedings VLSI Technology, p25-26 (2012).Google Scholar
Goh, Y. and Jeon, S., Nanotechnology, 29, p335201 (2018)CrossRefGoogle Scholar
Salahuddin, S., and Datta, S., Nanoletters, 8, p405 (2008).CrossRefGoogle Scholar
François, T., Coignus, J., Grenouillet, L., Barlas, M., Bessif, B., Vaxelaire, N., Boutry, H., Coig, M., Vilain, E., Rambal, N., Pedini, J.-M., Morand, Y., Mazen, F., Nowak, E., Gaillard, F., SSDM (2018) to appear in JJAP (2019).Google Scholar
Soler, J., Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D., Journal of Physics: Condensed Matter, 14, p2745 (2002)Google Scholar
Bahn, S. R. and Jacobsen, K. W., Computing in Science and Engineering, 4, p56 (2002)CrossRefGoogle Scholar
Batra, R., Doan Tran, H., and Ramprasad, R., Applied Physics Letter, 108, 172902 (2016)CrossRefGoogle Scholar
Mittmann, T., Materano, M., Lomenzo, P. D., Park, M. H., Stolichnov, I., Cavalieri, M., Zhou, C., Chung, C.‐C., Jones, J. L., Szyjka, T., Müller, M., Kersch, A., Mikolajick, T., Schroeder, U., Advanced Material Interfaces, 1900042 (2019)CrossRefGoogle Scholar
Maeda, T., Magyari-Kope, B., Nishi, Y., IEEE IMW 2017, 7939087 (2017)Google Scholar
Reyes-Lillo, S. E., Garrity, K.F., and Rabe, K.M, Physical Review B 90, 140103(R) (2014)CrossRefGoogle Scholar
Clima, S., Wouters, D.J., Adelmann, C., Schenk, T., Schroeder, U., Jurczak, M., and Pourtois, G., Applied Physics Letters 104, 092906 (2014)CrossRefGoogle Scholar
Xue, K.-H., Su, H.-L., Li, Y., Sun, H.-J., He, W.-F., Chang, T.-C., Chen, L., Zhang, D. W., Miao, X.-S., Journal of Applied Physics 124, 024103 (2018)CrossRefGoogle Scholar