Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T15:31:22.213Z Has data issue: false hasContentIssue false

Carbon-Substituted Hematite and MagnetiteNanoparticles

Published online by Cambridge University Press:  21 December 2015

Monica Sorescu*
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282
Richard Trotta
Affiliation:
Duquesne University, Department of Physics, Fisher Hall, Pittsburgh, PA 15282
*
*(Email: sorescu@duq.edu)
Get access

Abstract

Graphite-doped hematite and magnetite nanoparticles systems (∼50 nm)were prepared by mechanochemical activation for milling times ranging from 2 to12 hours. Their structural and magnetic properties were studied by57Fe Mössbauer spectroscopy. The spectra corresponding tothe hematite milled samples were analyzed by considering two sextets,corresponding to the incorporation of carbon atoms into the iron oxidestructure. For ball milling time of 12 hours a quadrupole split doublet has beenadded, representing the contribution of ultrafine particles. TheMössbauer spectra of graphite-doped magnetite were resolved consideringa sextet and a magnetic hyperfine field distribution, corresponding to thetetrahedral and octahedral sublattices of magnetite, respectively. A quadrupolesplit doublet was incorporated in the fitting of the 12-hour milled sample. Therecoilless fraction for all samples was determined using our previouslydeveloped dual absorber method. It was found that the recoilless fraction of thegraphite-doped hematite nanoparticles decreases as function of ball millingtime. The f factor of graphite-containing magnetitenanoparticles for the tetrahedral sites stays constant, while that of theoctahedral sublattice decreases as function of ball milling time. These findingsreinforce the idea that carbon atoms exhibit preference for the octahedral sitesof magnetite.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sajitha, E.P., Prasad, V., Subramanyam, S.V., Mishra, A.K., Sarkar, S., Bansal, C., J. Magn. Magn. Mater. 313, 329 (2007).Google Scholar
David, B., Pizurova, N., Schneeweiss, O., Bezdicka, P., Morjan, I., Alexandrescu, R., J. Alloys Comp. 378, 112 (2004).Google Scholar
Snovski, R., Grinblat, J., Sougrati, M.T., Jumas, J.C., Margel, S., J. Magn. Magn. Mater. 349, 35 (2014).Google Scholar
Morjan, I., Dumitrache, F., Alexandrescu, R., Fleaca, C., Birjega, R., Luculescu, C.R., Soare, I.,.Adv. Powder Tech. 23, 88 (2012).Google Scholar
Dumitrache, F., Morjan, I., Fleaca, C., Birjega, R., Vasile, E., Kuncser, V., Alexandrescu, R., Appl. Surf. Sci. 257, 5265 (2011).Google Scholar
Zhang, H., J. Phys. Chem. Sol. 60, 1845 (1999).Google Scholar
Venkatesan, M., Dunne, P., Chen, Y.H., Zhang, H.J., Coey, J.M.D., Carbon 56, 279 (2013).Google Scholar
Vermisoglou, E.C., Devlin, E., Giannakopoulou, T., Romanos, G., Boukos, N., Psycharis, V., Lei, C., J. Alloys Comp. 590, 102 (2014).Google Scholar
Concheso, A., Santamaria, R., Menendez, R., Jimenez-Mateos, J.M., Alcantara, R., Lavela, P., Tirado, J.L., Carbon 44, 1762 (2006).Google Scholar
Wang, Y., Yang, L., Hu, R., Ouyang, L., Zhu, M., Electrochem. Acta 125, 421 (2014).Google Scholar
Jin, B., Liu, A.H., Liu, G.Y., Yang, Z.Z., Zhong, X.B., Ma, X.Z., Yang, M., Wang, H.Y., Electrochem. Acta, 90, 426 (2013).Google Scholar
Marquez-Linares, F., Uwakweh, O.N.C., Lopez, N., Chavez, E., Polanco, R., Morant, C., Sanz, J.M., J. Sol. St. Chem. 184, 655 (2011).Google Scholar
Osterle, W., Orts-Gil, G., Gross, T., Deutsch, C., Hinrichs, R., Vasconcellos, M.A.Z., Mater. Char. 86, 28 (2013).Google Scholar
Sorescu, M., Mater. Lett, 54, 256 (2002).Google Scholar
Sorescu, M., Nucl. Intrum. Meth. Phys. Res. B 269, 590 (2011).Google Scholar