Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T01:05:04.744Z Has data issue: false hasContentIssue false

Chemical Synthesis of Gold Micro-Bars for Optical Circuitry Applications

Published online by Cambridge University Press:  22 May 2017

Erik W. Hobbs
Affiliation:
Department of Physics Astronomy and Geosciences, Towson University 8000 York Road, Towson, MD21252, U.S.A.
Mary Sajini Devadas*
Affiliation:
Department of Chemistry, Towson University 8000 York Road, Towson, MD21252, U.S.A.
*
Get access

Abstract

The aim of this research was to establish a reliable chemical synthesis route to produce plasmonic gold micro-bars. Gold micro-bars have been synthesized through chemical reduction in the presence of surfactants: polyvinylpyrrolidone (PVP) and sodium dodecylsulfonate (SDS), and in the presence of a metal cation. Synthesis was executed by varying the concentration of PVP and SDS, and introducing copper ions, and performing seeded growth. Resulting plasmonic gold micro-bars were viewed under dark field microscopy and scanning electron microscopy (SEM) to visualize the nanoparticle product mixture. Energy Dispersive Spectroscopy (EDS) was used to determine composition of the micro-bars. The results indicate that the copper additive method yields the longest micro-bars.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Christopher, P., Xin, H. and Linic, S., Nat Chem 3 (6), 467472 (2011).Google Scholar
Zhang, J., Liu, H., Wang, Z. and Ming, N., Appl. Phys. Lett. 91 (13), 133112 (2007).Google Scholar
Johns, P., Yu, K., Devadas, M. S., Li, Z., Major, T. A. and Hartland, G. V., Nanoscale 6 (23), 1428914296 (2014).Google Scholar
Yan, Z., Bao, Y., Manna, U., Shah, R. A. and Scherer, N. F., Nano Lett. 14 (5), 24362442 (2014).Google Scholar
Maier, S. A., Kik, P. G., Atwater, H. A., Meltzer, S., Harel, E., Koel, B. E. and Requicha, A. A. G., Nat Mater 2 (4), 229232 (2003).Google Scholar
Jarrett, J. W., Zhao, T., Johnson, J. S. and Knappenberger, K. L., J. Phys. Chem. C 119 (28), 1577915800 (2015).CrossRefGoogle Scholar
Nikoobakht, B. and El-Sayed, M. A., Chemistry of Materials 15 (10), 19571962 (2003).CrossRefGoogle Scholar
Jana, N. R., Gearheart, L. and Murphy, C. J., J. Phys. Chem. B 105 (19), 40654067 (2001).Google Scholar
Sun, Y., Mayers, B. and Xia, Y., Adv. Mater. 15 (7-8), 641646 (2003).Google Scholar
Xia, Y., Xiong, Y., Lim, B. and Skrabalak, S. E., Angew. Chem. Int. Ed. 48 (1), 60103 (2009).Google Scholar
Murphy, C. J., Thompson, L. B., Chernak, D. J., Yang, J. A., Sivapalan, S. T., Boulos, S. P., Huang, J., Alkilany, A. M. and Sisco, P. N., Curr. Opin. Colloid Interface Sci. 16 (2), 128134 (2011).CrossRefGoogle Scholar
Wen, T., Hu, Z., Liu, W., Zhang, H., Hou, S., Hu, X. and Wu, X., Langmuir 28 (50), 1751717523 (2012).Google Scholar
Pitarke, J. M., Silkin, V. M., Chulkov, E. V. and Echenique, P. M., Rep. Prog. Phys. 70 (1), 1 (2007).Google Scholar
Yu, K., Devadas, M. S., Major, T. A., Lo, S. S. and Hartland, G. V., J. Phys. Chem. C 118 (16), 86038609 (2014).Google Scholar
Payne, C. M., Tsentalovich, D. E., Benoit, D. N., Anderson, L. J. E., Guo, W., Colvin, V. L., Pasquali, M. and Hafner, J. H., Chem. Mater. 26 (6), 19992004 (2014).Google Scholar
Ohlinger, A., Nedev, S., Lutich, A. A. and Feldmann, J., Nano Lett. 11, 1770 (2011).Google Scholar
Bek, A., Jansen, R., Ringler, M., Mayilo, S., Klar, T. A. and Feldmann, J., Nano Lett. 8 (2), 485490 (2008).Google Scholar
Zhao, N., Wei, Y., Sun, N., Chen, Q., Bai, J., Zhou, L., Qin, Y., Li, M. and Qi, L., Langmuir 24 (3), 991998 (2008).Google Scholar
Sun, J., Guan, M., Shang, T., Gao, C., Xu, Z. and Zhu, J., Cryst. Growth Des. 8, 906 (2008).Google Scholar