Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:26:26.388Z Has data issue: false hasContentIssue false

Cobalt-Based Electrolytes for Efficient Flexible Dye-Sensitized Solar Cells

Published online by Cambridge University Press:  19 February 2019

Jihun Kim
Affiliation:
RIAM, Department of Material Science and Engineering, Seoul National University, Kwanakro-1, Kwanakgu, Seoul, Korea 08826
Horim Lee
Affiliation:
RIAM, Department of Material Science and Engineering, Seoul National University, Kwanakro-1, Kwanakgu, Seoul, Korea 08826 Polymer Hybrid Research Center, Korea Institute of Science and Technology, P.O. BOX131, Cheongryang, Seoul, Korea 02792
Dong Young Kim
Affiliation:
Polymer Hybrid Research Center, Korea Institute of Science and Technology, P.O. BOX131, Cheongryang, Seoul, Korea 02792
Sehyun Kim
Affiliation:
LG Chem., Moonjiro 188, Yousungku, Daejon, Korea34122
Yongsok Seo*
Affiliation:
RIAM, Department of Material Science and Engineering, Seoul National University, Kwanakro-1, Kwanakgu, Seoul, Korea 08826
*
*(Email: ysseo@snu.ac.kr)
Get access

Abstract

We have developed new flexible dye-sensitized solar cells (DSSCs) comprising organic dye (JH-1), cobalt redox electrolyte and hierarchically structured TiO2 (HS-TiO2) photoelectrode prepared using an electrostatic spray method. The performance of JH-1 sensitized flexible DSSC with a cobalt redox electrolyte was compared with those of N719-based DSSC and DSSC with I-/ I3- redox electrolyte. As a result, JH-1 sensitized flexible DSSC with [Co(Ⅲ/Ⅱ)(bpy-pz)3](PF6)3/2 redox system exhibited a high photocurrent density of 9.17 mA cm-2, an open circuit voltage of 0.953 V, a fill factor of 0.70, and a power conversion efficiency of 6.12% under 1 sun illumination (100 mW cm-2). The incident photon-to-current conversion efficiency was measured to explain the photocurrent generation difference by different dyes and electrolytes. The electron recombination lifetime of cells was measured by intensity-modulated photovoltage spectroscopy. Mass transport in DSSCs employing cobalt redox electrolytes was also investigated by the photocurrent transient measurements and electrochemical impedance spectroscopy (EIS) analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

These authors contributed equally.

References

Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson., H. H. Chem. Rev. 110, 6595 (2010).CrossRefGoogle Scholar
Mishra, A., Markus, K., Fischer, M., Buerle, B., Angew. Chem. Int. Ed. 48, 2474(2009).CrossRefGoogle Scholar
K Kalyanasundaram, K., (Ed). Dye-Sensitized Solar Cells, EPFL Press, Lausanne (2010).CrossRefGoogle Scholar
Upadhyaya, H. M., Senthilarasu, S., Hsu, M., Kumar, D.K., Sol. Energy Mat. Sol. Cells. 119, 291 (2013).CrossRefGoogle Scholar
Weerasinghe, H. C., Huang, F., Cheng, Y. B., Nano Energy. 2, 174 (2012)CrossRefGoogle Scholar
Chen, H. W., Huang, K. C., Hsu, C. Y., Lin, C. Y., Chen, J. G., Lee, C. P., Lin, L. Y., Vittal, K., Ho, C., Electrochim. Acta. 56, 7991 (2011)Google Scholar
Bella, F., Galliano, S.,Gerbaldi, C., Viscardi, G.. Energies 9, 384 (2016)CrossRefGoogle Scholar
Miyasaka, T., Kijitori, Y., Murakami, T. N., Kimura, M., Uegusa, S., Chem. Lett. 31, 1250 (2002)CrossRefGoogle Scholar
Yum, J. H., Kim, S. S., , D. Y.;Kim, Y. E. Sung, J. Photochem. Photobiol. A. 173, 1 (2005)CrossRefGoogle Scholar
Grinis, L., Kotlyar, S., Ruhle, S., Grinblat, J., Zaban, A., Adv. Funct. Mater. 20, 282 (2010)CrossRefGoogle Scholar
Halme, J.,Saarinen, , Lund, P., Sol. Energy Mat. Sol. Cells. 90, 887 (2006).CrossRefGoogle Scholar
Cha, S. I., Koo, B. K., Hwang, K. H., Seo, S. H., Lee, D. Y., J. Mater. Chem. 21, 6300 (2011)CrossRefGoogle Scholar
Gutierrez-Tauste, J., Zumeta, I., Vigil, I. E., Hernandez- Fenollosa, M. A., Domenech, M., Ayll´on, J. A., J. Photochem. Photobiol. A. 175, 165 (2015)CrossRefGoogle Scholar
Uchida, S., Timiha, M., Takizawa, H., Kawaraya, M., J. Photochem. Photobiol. A. 164, 93 (2004)CrossRefGoogle Scholar
Yamaguchi, Y., Tobe, N., Matsumoto, D., Nagai, T., Arakawa, H., Sol. Energy Mat. Sol. Cells. 94, 812 (2010)CrossRefGoogle Scholar
Li, X., Lin, H., Li, J. B., Wang, N., Lin, C. F., Zhang, L. Z., J. Photochem. Photobiol. A. 195, 247 (2008)CrossRefGoogle Scholar
Lee, H., Hwang, D., Jo, S. M., Kim, D., Seo, Y., Kim, D. Y., ACS Appl. Mater. Interfaces., 4, 3308 (2012)CrossRefGoogle Scholar
Kim, J., Lee, H., Kim, D. Y., Seo, Y., Adv. Mater., 26, 5192 (2014)CrossRefGoogle Scholar
Boschloo, G., Hagfeldt, A., Acc. Chem. Res. 42, 18191826 (2009)CrossRefGoogle Scholar
Snaith, H. J., Adv. Funct. Mater. , 20, 13 (2010).CrossRefGoogle Scholar
Cong, J., Yang, X., Kloo, L., Sun, L., Energy Environ. Sci. , 5, 9180 (2012)CrossRefGoogle Scholar
Hamann, T. W., Dalton Trans., 41, 3111(2012)CrossRefGoogle Scholar
Hamann, T. W., Ondersma, J. W., Energy Environ. Sci., 4, 370381(2011)CrossRefGoogle Scholar
Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, S. M., Diau, E. W.G., Yeh, C. Y., Zakeeruddin, S. M, Grätzel, M, Science, 334, 629 (2011).CrossRefGoogle Scholar
Yum, J. H., Baranoff, E., Kessler, F., Moehl, T., Ahmad, S., Bessho, T., Marchioro, A., Ghadiri, E., YiM, J. M, J., Nazeeruddin, C., Grätzel, M. Nat. Commun , 3, 631 (2012)CrossRefGoogle Scholar
Bai, Y.Z., Zhou, J., Wang, D., Zhang, Y., Min Wang, P., J. Am. Chem. Soc., 133, 11442(2011)CrossRefGoogle Scholar
Sapp, S. A., Elliott, M., Contado, C., Caramori, S., Bignozzi, C. A., J. Am. Chem. Soc., 124, 11215 (2002)CrossRefGoogle Scholar
Feldt, S. M., Gibson, E. A., Gabrielsson, E., Sun, L., Boschloo, G., Hagfeldt, A., . J. Am. Chem. Soc., 132, 16714 (2010)CrossRefGoogle Scholar
Feldt, S. M., Lohse, P. W., Kessler, F., Nazeeruddin, M., Grätzel, M, Hagfeldt, A., Phys. Chem. Chem. Phys, 15, 7087 (2013)CrossRefGoogle Scholar
Hwang, D., Lee, H., Jang, S. Y., Jo, S. M., Kim, D., Seo, Y., Kim, D. Y., ACS Appl. Mater. Interfaces., 3, 2719 (2011).CrossRefGoogle Scholar
Chang, B.Y., Park, S. M., Annu. Rev. Anal. Chem. 3, 207 (2010)CrossRefGoogle Scholar
Kirner, J. T., Elliott, C. M., J. Phys.Chem.C, 119, 17502 (2015)CrossRefGoogle Scholar