Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T23:44:07.529Z Has data issue: false hasContentIssue false

Effect of Fe (II) concentration on metronidazole degradation by Fenton process: Performance and Kinetic study

Published online by Cambridge University Press:  09 November 2020

Donovan R. Ramírez-Carranza
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico, s/n, col. Agrícola Bellavista, Metepec, C. P. 52140, México. mmacedom@toluca.tecnm.mx
G. Macedo-Miranda*
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico, s/n, col. Agrícola Bellavista, Metepec, C. P. 52140, México. mmacedom@toluca.tecnm.mx
G. González-Blanco
Affiliation:
Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Carretera Toluca-Atlacomulco, km 14.5, México.
S. Mireya-Martínez
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico, s/n, col. Agrícola Bellavista, Metepec, C. P. 52140, México. mmacedom@toluca.tecnm.mx
Julio C. González-Juárez
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico, s/n, col. Agrícola Bellavista, Metepec, C. P. 52140, México. mmacedom@toluca.tecnm.mx
R. Beristain-Cardoso
Affiliation:
Universidad Autónoma Metropolitana-Lerma, Av. De las Garzas No. 10, Col. El Panteón, Lerma de Villada, México. r.beristain@correo.ler.uam.mx
Get access

Abstract

Metronidazole (MNZ) is an antibiotic drug to be carcinogenic and mutagenic. The present work was focused on MNZ degradation using the Fenton process, in batch studies. Five initial concentrations of MNZ (0.5, 5, 10, 15 and 20 mg/L), three Fe (II) concentrations (2.94, 5.88 and 11.66 μM), 29.4 μM H2O2, and three pH (3.5, 5 and 7) were evaluated at a reaction time of 5 min. A statistical factorial design using the program Minitab 18® was used to study the MNZ degradation. The best experimental conditions to degrade MNZ at 100% was 2.94 μM Fe2+ and pH of 3.5. Three kinetic models were used to study the degradation profile of MNZ at 2.94 μM Fe2+ and 29.4 μM H2O2, such as the first-order, the second-order, and BMG kinetic model. The BMG kinetic model was the best model to describe the MNZ degradation by Fenton process. On other hand, the optimal pH for MNZ degradation was 3.5, independently of the molar ratio Fe2+/H2O2 evaluated. At pH 5, degradation efficiencies decreased significantly, while at pH 7 the lowest degradation of MNZ was observed. Finally, the Fenton process showed the potential to degrade metronidazole.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nasseh, N., Barikbin, B., Taghavi, L. and Nasseri, M.A., Composites Part B. 159, 146-156 (2019).CrossRefGoogle Scholar
Aboudalle, A., Djelal, H., Fourcade, F., Domergue, L., Assadi, A.A., Lendormi, T., Taha, S. and Amrane, A., J. Hazard. Mater. 359, 85-95, (2018).CrossRefGoogle Scholar
Yakubu, O.H., Toxics. 5, 10, (2017).CrossRefGoogle Scholar
Ramos-Alvariño, C., Rev. Cubana Hig. Epidemiol. 47(2), (2009).Google Scholar
Shemer, H., Kacar, K.Y., and Linden, K.G., Chemosphere. 63, 269-276, (2006).CrossRefGoogle Scholar
Ertugay, N. and Acar, F.N., Arab. J. Chem. 10, S1158-S1163, (2017).CrossRefGoogle Scholar
Ahmadzadeh, S., & Dolatabadi, M., Chemosphere. 212, 533-539 (2018).CrossRefGoogle Scholar
Luo, T., Wang, M., Tian, X., Nie, Y., Yang, C., Lin, H-M., Luo, W. and Wang, Y., Chemosphere. 236, 124367, (2019).CrossRefGoogle Scholar
Bu, X., Wang, Y., Li, J. and Zhang, C., J. Alloys Comp. 628, 20-26, (2015).CrossRefGoogle Scholar
Talwar, S., Verma, A.K., Sangal, V.K. and Štangar, U.L., Chem. Eng. J. 388, 124184, (2020).CrossRefGoogle Scholar
Talwar, S., Verma, A.K. and Sangal, V.K., J. Environ. Manag. 250, 109428, (2019).CrossRefGoogle Scholar
Talwar, S., Verma, A.K. and Sangal, V.K., Chem. Eng. J. 382, 122772, (2019).CrossRefGoogle Scholar
Zhang, M., Dong, H., Zhao, L., Wang, D. and Menga, D., Sci. of the Total Environ. 670, 110-121, (2019).Google Scholar
Gogate, P.R. and Pandit, A.B., Adv. Environ. Res. 8, 501-551, (2004).CrossRefGoogle Scholar
Sohrabi, M.R., Khavaran, A., Shariati, S. and Shariati, S., Arab. J. Chem. 10, S3523-S3531, (2017).CrossRefGoogle Scholar
Babuponnusami, A. and Muthukumar, K., J. Environ. Chem. Eng. 2. 557-572, (2014).CrossRefGoogle Scholar
Xia, Y., Zhang, Q., Li, G., Tu, X., Zhou, Y. and Hu, X., J. Taiwan Inst. Chem. Eng. 96, 256-263, (2019).CrossRefGoogle Scholar
Liu, Z. X., Zhang, L. J., Dong, F.H., Dang, J., Wang, K.L., Wu, D., and Zhang, J., J. Fang, Appl. Nano Mater. 1, 4170-4178, (2018).CrossRefGoogle Scholar