Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T06:24:04.871Z Has data issue: false hasContentIssue false

Electrochemical sensor using carbon nanotube composites for chronic-degenerative diseases diagnosis

Published online by Cambridge University Press:  12 May 2020

Antonio Rowland Ramos-Díaz
Affiliation:
Instituto Politécnico Nacional, ESIQIE, Av. Instituto Politécnico Nacional s/n, 07738Ciudad de México, México.
Ramon Gómez Aguilar
Affiliation:
Instituto Politécnico Nacional, UPIITA, Av. Instituto Politécnico Nacional, 07340Ciudad de México, México.
Hugo Martínez-Gutiérrez
Affiliation:
Instituto Politécnico Nacional, CNMN, Av. Luis Enrique Erro s/n, 07738Ciudad de México, México.
Jaime Ortiz-López
Affiliation:
Instituto Politécnico Nacional, ESFM, Av. Instituto Politécnico Nacional, 07738Ciudad de México, México.
Get access

Abstract

Sensitive and selective detection for cancer biomarkers is critical in cancer clinical diagnostics. In this work, we report an electrochemical detection platform for the carbohydrate antigen tumor marker 15-3 (CA15-3). It is based on a composite material of poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (MEH-PPV) and multi-walled carbon nanotubes (MWCNT), which deposited as active layer of an organic thin-film transistor. This layer was surface functionalized with the Anti-CA15-3 monoclonal antibody. The devices have a favorable electrical output response for VSD source-drain potentials between 0 to 5 volts, and VG as 8 volts. Once the antigen (CA15-3) is recognized by the antibody, the electrical response is diminished. The test has a linear response in the concentration range of 0–30 U mL - 1 of CA 15–3, with a lower detection limit of ~1 U mL - 1 and a stability of 90% with respect to the initial values after storing the device for two weeks. The method was successfully applied to the determination of CA15-3 in serum samples. Possibly, this used composite material has a greater scope and can be applied to another type of detection scheme.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, H., Goodell, V., Disis, M. L. Journal of proteome research, 7(4), 1388-1394 (2008).CrossRefGoogle Scholar
Frisoni, G. B., Boccardi, M., Barkhof, F., Blennow, K., Cappa, S., Chiotis, K., Hansson, O. The Lancet Neurology, 16(8), 661-676 (2017).CrossRefGoogle Scholar
Kishore, L., Kaur, N., Singh, R. Current diabetes reviews, 13(6), 598-605 (2017).CrossRefGoogle Scholar
Allegra, A., Alonci, A., Campo, S., Penna, G., Petrungaro, A., Gerace, D., Musolino, C. International journal of oncology, 41(6), 1897-1912 (2012).CrossRefGoogle Scholar
Doecke, J. D., Laws, S. M., Faux, N. G., Wilson, W., Burnham, S. C., Lam, C. P., De Ruyck, . Archives of neurology 6 (10), 1318-1325 (2012).CrossRefGoogle Scholar
Jayanthi, V. S. A., Das, A. B., Saxena, U. Biosensors and Bioelectronics, 91, 15-23 (2017).CrossRefGoogle Scholar
Monošík, R., Stred'anský, M., Šturdík, E. Journal of clinical laboratory analysis 26.1, 22-34 (2012).CrossRefGoogle Scholar
Salimi, A., Pourbahram, B., Mansouri-Majd, S., Hallaj, R. Electrochimica Acta 156, 207-215 (2015).CrossRefGoogle Scholar
Pescatori, M., Bedognetti, D., Venturelli, E., Ménard-Moyon, C., Bernardini, C., Muresu, E., Bianco, A. Biomaterials, 18, 4395-4403 (2013).CrossRefGoogle Scholar
Yang, S. Y., Cicoira, F., Shim, N., Malliaras, G. G. Iontronics: Iontronics: Ionic Carriers in Organic Electronic Materials and Devices 166 (2016).Google Scholar
Duffy, M. J. Clin Chim Acta. 411(23-24):1869-74 (2010).CrossRefGoogle Scholar
Kong, F., Sun, Y. M., Yuan, R. K. Nanotechnology, 18(26), 265707 (2007).CrossRefGoogle Scholar
Gomez-Aguilar, R., Ortiz-Lopez, J. Journal of Polymer Science Part B: Polymer Physics, 52(8), 578-586 (2014).CrossRefGoogle Scholar
Amani, J., Khoshroo, A., Rahimi-Nasrabadi, M. Microchimica Acta, 185(1), 79 (2018).CrossRefGoogle Scholar
Li, H., He, J., Li, S., Turner, A. P. Biosensors and Bioelectronics, 43, 25-29 (2013).CrossRefGoogle Scholar
Sohn, Y. S., Lee, Y. K. Journal of biomedical optics, 19(5), 051209 (2014).CrossRefGoogle Scholar
Raghav, R., Srivastavap, S. Biosensors and Bioelectronics, 78, 396-403 (2016).CrossRefGoogle Scholar
Quan, S., Teng, F., Xu, Z., Qian, L., Hou, Y., Wang, Y., Xu, X. European polymer journal, 42(1), 228-233 (2006).CrossRefGoogle Scholar
Gomes, R. S., Moreira, F. T., Fernandes, R., Sales, M. G. F. PloS one, 13(5) (2018).Google Scholar
Wu, T. L., Sun, Y. C., Chang, P. Y., Tsao, K. C., Sun, C. F., Wu, J. T. Journal of clinical laboratory analysis, 17(6), 241-246 (2003).CrossRefGoogle Scholar
Borgmann, S., Schulte, A., Neugebauer, S., Schuhmann, W. Advances in Electrochemical Science and Engineering 2 (2011).Google Scholar