Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T16:01:05.729Z Has data issue: false hasContentIssue false

Enhancing the photocatalytic degradation of selected chlorophenols using Ag/zno nanocomposites

Published online by Cambridge University Press:  12 February 2018

Kate Kotlhao
Affiliation:
Department of Chemistry, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa
Fanyana M. Mtunzi
Affiliation:
Department of Chemistry, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa
Vusumzi Pakade
Affiliation:
Department of Chemistry, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa
Neelan Laloo
Affiliation:
Department of Biotechnology, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa
Ikechukwu P. Ejidike
Affiliation:
Department of Chemistry, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa
Sekomeng J. Modise
Affiliation:
Institute of Chemical and Biotechnology, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa
Richard. M. Moutloali
Affiliation:
Department of Applied Chemistry, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg2028, South Africa
Michael J. Klink*
Affiliation:
Department of Chemistry, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa Department of Biotechnology, Vaal University of Technology, Andries Potgieter Boulevard, Vanderbijlpark, 1911, South Africa
*
Get access

Abstract

Chlorophenols are among the priority listed water contaminants due to their estrogenic, mutagenic or carcinogenic health effects. The Ag/ZnO nanocomposites (NCs) were synthesized, characterized and tested for photacatalytic degradation of chlorophenols in water. The synthesis was done using zinc nitrate hexahydrate (ZnNO3. 6H2O) precursor and sodium hydroxide (NaOH). Silver nitrate (AgNO3) was added to ZnO and reduced with sodium brohydride to produce the silver nanoparticles (NPs) within the ZnO structure. The silver content was varied from 1, 3 and 5wt% for optimisation. The nanocomposites were characterised using ultraviolet - visible spectroscopy (UV-Vis), photolumniscence (PL), x-ray diffraction (XRD), and scanning transmission electron microscopy (STEM). The nanocomposites were tested for their photocatalytic properties on 2- chlorophenol (CP), 2- chlorophenol (CP) and 2,4- dichlorophenol (DCP) in water. The UV-Vis results showed that, as the amount of silver was increased a gradual slight red shift was observed. The XRD patterns for Ag/ZnO exhibited peaks that were characteristic of the hexagonal wurzite structure and peaks characteristic for Ag appeared at 38.24o, 44.37o, 64.67o and 77.58o corresponding to (111), (200), (220) and (311) reflection planes. STEM results showed the presence of Ag in ZnO with ZnO appearing as rods shapes. The EDX elemental analysis confirmed the presence of Ag in the Ag/ZnO nanocomposites with no contaminants peaks. On testing the nanocomposites for phohotocatalytic degradation of chlorophenols, addition of Ag to ZnO improved degradation of the chlorophenols compared to the pristine ZnO.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Seery, M. K., George, R., Floris, P., and Pillai, S. C., J. Photochem. Photobiol. A: Chem 189, 258263 (2007).CrossRefGoogle Scholar
Behnajady, M. A., Modirshahla, N., and Hamzavi, R., J. Hazard. Mater. B 133, 226232 (2006).CrossRefGoogle Scholar
Smith, W., Maob, S., Lu, G., Catlett, A., and Chen, J., Chem. Phys. Lett. 485, 171175 (2010).CrossRefGoogle Scholar
Bahadur, N., Jai, K., Srivastava, A., Govind, G. HaranathR., D. R., D., and Dulat, M. S., Chem. Phys. Mater. 124, 600608 (2010).CrossRefGoogle Scholar
Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., and Naseem, S., Nanomaterials 6, (2016).CrossRefGoogle Scholar
Mosquera, E., Rojas-Michea, C., Morel, M., Gracia, F., Fuenzalida, V., and Zárate, R. A., Applied Surface Science 347, 561568 (2015).CrossRefGoogle Scholar
Cheng, Y., An, L., Lan, J., Gao, F., Tan, R., Li, X., and Wang, G., Materials Research Bulletin 48, 42874293 (2013).CrossRefGoogle Scholar
Jaramillo-Páez, C., Navío, J. A., and Hidalgo, M. C. Journal of Photochemistry and Photobiology A: Chemistry 356, 112122 (2018).CrossRefGoogle Scholar
Singh, N., Chakraborty, R., and Gupta, R. K., Journal of Environmental Chemical Engineering 6, 459467 (2018).CrossRefGoogle Scholar
Xie, J. and Wu, Q., Materials Letters 64, 389392 (2010).CrossRefGoogle Scholar
Karn, S. K. and Chakrabarti, S. K., Int. Recycl. Org. Waste Agricult. 4, 5362 (2015).CrossRefGoogle Scholar
Ghaly, A. E., Ananthashankar, R., Alhattab, M., and Ramakrishnan, V. V. J Chem Eng Process Techno 5, 182200 (2014).Google Scholar
Ge, T., Han, J., Qi, Y., Gu, X., Ma, L., Zhang, C., Naeem, S., and Huang, D., Aquat. Toxocol. 184, 7893 (2017).CrossRefGoogle Scholar
Igbinosa, E. O., Odjadjare, E. E., Chigor, V. N., Igbinosa, I. H., Emoghene, A. O., Ekhaise, F. O., Igiehon, N. O., and Idemudia, O. G., Sci. World J. (2013).Google Scholar
Aby, H., Kshirsagar, A., and Khanna, P. K. J. Mater. Sci. Nano-technol. 4, (2016).Google Scholar
Manikandan, P., Palanisamy, P. N., Ramya, R., and Nalini, D., International Journal of Emerging Technologies in Computational and Applied Sciences 9, 148151 (2014).Google Scholar
Otieno, B., Apollo, S., Naidoo, B., and Ochieng, A., “Response surface methodology modelling of diazinon photodegradation using TiO2-ZnO.29th-30th December 2016, ISBN: 978-93-86083-34-0,” in Proceedings of ISERD International Conference, Anonymous (, 29th - 30th December 2016).Google Scholar
Kumar, A., Kaur, K., and Sharma, S., Indian J. Pharm.Biol. Resour. 1, 1624 (2013).Google Scholar
Xie, W., Li, Y., Sun, W., Huang, J., Hao Xie, H., and Zhao, X., ,“ Journal of Photochemistry and Photobiology A: Chemistry 216, 149155 (2010).CrossRefGoogle Scholar
Guidelli, E. J., Baffa, O., and Clarke, D. R., Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence (2015).Google ScholarPubMed
Lu, W. W., Gao, S. Y., and Wang, J. J., Journal of Physysics and Chemistry C 112, 1679216800 (2008).CrossRefGoogle Scholar
Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., and Jiazhong, S., Solar Energy Materials & Solar Cells 90, 17731787 (2006).CrossRefGoogle Scholar
Lu, X., Zhang, W., Zhao, Q., Wang, L., and Wang, C., e-Polymers, 6, 430437 (2013).Google Scholar
Jyoti, K., Baunthiyal, M., and Singh, A., Journal of Radiation Research and Applied Sciences 9, 217227 (2016).CrossRefGoogle Scholar
Talari, M. K., Majeed, A. B. A., Tripathi, D. K., and Tripathy, M., Chemical and Phamaceutical Bulletin 60, 818824 (2012).CrossRefGoogle Scholar
Sharma, N., Kumar, J., Thakur, S., Sharma, S., and Vikas ShrivastavaDrug, V. Invention Today 5, 5054 (2013).CrossRefGoogle Scholar
Gnanaprakasam, A., Sivakumar, V. M., and Thirumarimurugan, M.,, Indian Journal of Materials Science 1-16 (2015).CrossRefGoogle Scholar
Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R. J., and Hashib, M. A., Desalination 261, 318 (2010).CrossRefGoogle Scholar