Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:28:08.305Z Has data issue: false hasContentIssue false

Experimental and Theoretical Studies of Resistive Switching in Grain Boundaries of Polycrystalline Transition Metal Oxide Film

Published online by Cambridge University Press:  09 January 2017

Takumi Moriyama*
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
Sohta Hida
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
Takahiro Yamasaki
Affiliation:
National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
Takahisa Ohno
Affiliation:
National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
Satoru Kishida
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
Kentaro Kinoshita
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
Get access

Abstract

Practical use of Resistive Random Access Memory (ReRAM) depends on thorough understanding of the resistive switching (RS) mechanism in polycrystalline metal oxide films. Based on experimental and theoretical results of NiO based ReRAM, we have proposed a grain surface tiling model, in which grain surfaces (i.e. grain boundaries) are composed by insulating and conductive micro surface structures. This paper reports the adequacy of our model to the NiO based ReRAM and universality of surface electronic properties in metal oxides of NiO, CoO and MgO. Experimental results of RS operating modes suggest that the resistance changes in the grain boundaries, supporting our model. First-principles calculation results suggest that our model can be adopted to other metal oxide materials and the RS from a low resistance to a high resistance can be caused at 1000 K, which agrees with previous experimental reports.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gibbons, J. F. and Beadle, W. E., Solid-State Electronics 7, 785 (1964).CrossRefGoogle Scholar
Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., Kim, H. J., Hwang, C. S., Szot, K., Waser, R., Reichenberg, B., and Tiedke, S., J. Appl. Phys. 98, 033715 (2005).CrossRefGoogle Scholar
Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., and Oshima, M., IEEE Tech. Dig. 2008, 293.Google Scholar
Lee, H. D., Magyari-Kope, B. and Nishi, Y., Phys. Rev. B 81, 193202 (2010).CrossRefGoogle Scholar
Moriyama, T., Yamasaki, T., Ohno, T., Kishida, S. and Kinoshita, K., J. Appl. Phys. 120, 215302 (2016).CrossRefGoogle Scholar
Moriyama, T., Koishi, R., Kimura, K., Kishida, S., and Kinoshita, K., Advances in Science and Technology 95, 84 (2014).CrossRefGoogle Scholar
Russo, U., Ielmini, D., Cagli, C., Lacaita, A. L., Spiga, S., Wiemer, C., Perego, M., and Fanciulli, M., IEDM Tech. Dig., 2007, p. 775.Google Scholar
Ohno, T., Yamamoto, T., Kokubo, T., Azami, A.. Sakaguchi, Y. Uda, T., Yamasaki, T., Fukuta, D., and Koga, J., SC’07 Proceedings of the 2007 ACM/IEEE conference on Supercomputing, Article No. 57 (2007).Google Scholar
Kohn, W., and Sham, L. J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Sarhan, A., Nakanishi, H., Dino, W. A., Kishi, H., and Kasai, H., Surface Science 606, 239 (2012).CrossRefGoogle Scholar
Yu, J., Rosso, M., and Bruemmer, S. M., J. Phys. Chem. C 116, 1948 (2012).CrossRefGoogle Scholar