No CrossRef data available.
Published online by Cambridge University Press: 03 July 2017
Spherical carbon particles (CPs) with controllable size and surface functionalities were prepared via hydrothermal treatment using sucrose as a precursor and then post modification methods. The CPs were prepared in two steps; firstly, dewatering of sucrose molecules at relatively low temperatures and secondly, carbonization at high temperatures. The micro/nano-sized CPs were functionalized by 2-Acrylamido-2-methylpropane sulfonic acid (AMPS), (3-Acrylamidopropyl)-trimethylammonium chloride (APTMACI), and N-isopropylacrylamide (NIPAM) in order to have the corresponding polymers on the surface of CPs. The monomers were polymerized via atom transfer radical polymerization (ATRP) by means of grafted initiator onto the CPs surface. Additionally, copolymer of these monomers was synthesized to introduce additional properties. The stability of the functionalized CPs in different solutions, and pH, temperature responsive behaviors of the newly prepared CP-polymers composite were evaluated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.