Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T04:32:28.888Z Has data issue: false hasContentIssue false

Graphene, Graphene Oxide and Silicon Irradiation by Cluster Ions of Argon and Highly Charged Ions

Published online by Cambridge University Press:  22 March 2016

Zeke Insepov*
Affiliation:
National Laboratory of Nazarbayev University, Astana, Kazakhstan Purdue University, West Lafayette, IN, USA
Ardak Ainabayev
Affiliation:
National Laboratory of Nazarbayev University, Astana, Kazakhstan
Kumiszhan Dybyspayeva
Affiliation:
National Laboratory of Nazarbayev University, Astana, Kazakhstan
Abat Zhuldassov
Affiliation:
National Laboratory of Nazarbayev University, Astana, Kazakhstan
Sean Kirkpatrick
Affiliation:
Exogenesis Corp., Billerica MA, USA
Micheal Walsh
Affiliation:
Exogenesis Corp., Billerica MA, USA
Anatoly F. Vyatkin
Affiliation:
Institute of Microelectronics Technology and High Purity Materials RAS, Moscow, RU
*
Corresponding author: zinsepov@purdue.edu
Get access

Abstract

Defect formation in the samples of graphene, graphene oxide and silicon irradiated with Ar cluster and highly-charged ion irradiations were studied. Ar cluster ions, with acceleration energy E = 30 kV (Exogenesis nAccel00, Boston, USA) and total Ar cluster ion fluences ranged from 1x109 cm-2 to 1x1013 cm-2 were directed toward various surfaces. Highly-charged ions (HCI) bombardment on surfaces with highly charged Xeq+ (q = 22) was employed at Eurasian National University, Kazakhstan, using a DC-60 cyclotron accelerator. Multi-layer graphene oxide, single-layer graphene- (SLG), few-layer of graphene (FLG) and polished Si are used for irradiation experiments. The study of irradiated samples was conducted by Raman spectroscopy, atomic force microscopy (AFM). Uniformly distributed defects and craters were observed on the surfaces of graphene, graphene oxide and silicon irradiated with cluster and HCI beams in our experiments. Ab-initio density-functional theory (DFT) was used to study point defects and molecular-dynamics (MD) simulations were used for studying formation of craters due to gas cluster ion impacts in graphene. The results of simulations were compared with experimental craters and surface shape.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).Google Scholar
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S., Adv. Mater. 22, 3906 (2010).Google Scholar
Novoselov, K. S., McCann, E., Morozov, S. V., Fal’ko, V. I., Katsnelson, M. I., Zeitler, U., Jiang, D., Schedin, F., and Geim, A. K., Nat. Phys. 2, 177 (2006).Google Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008). 11.Google Scholar
Mak, K. F., Sfeir, M. Y., Wu, Y., Lui, C. H., Misewich, J. A., and Heinz, T. F., Phys. Rev. Lett. 101, 196405 (2008).Google Scholar
Zuev, Y. M., Chang, W., and Kim, P., Phys. Rev. Lett. 102, 096807 (2009).Google Scholar
Liao, Z. M., Han, B. H., Zhou, Y. B., and Yu, D. P., J. Chem. Phys. 133, 044703 (2010).Google Scholar
Insepov, Z., Yamada, I.. Molecular dynamics simulation of cluster ion bombardment of solid surfaces. Nuclear Instruments and Methods in Physics Research B 99 (1995) 248252.CrossRefGoogle Scholar
Allen, L. P., Insepov, Z., Fenner, D. B.. Craters on silicon surfaces created by gas cluster ion impacts. Journal of Applied Physics 2002, vol. 92 (7), 36713678.Google Scholar
Insepov, Z., Allena, L. P., Fenner, D. B., et al. Craters on silicon surfaces created by gas cluster ion impacts. Journal of Applied Physics 2002, 92, (7), 3671-3678. Z. Insepov, I. Yamada. Molecular dynamics simulation of cluster ion bombardment of solid surfaces. Nuclear Instruments and Methods in Physics Research B 99 (1995) 248252.Google Scholar
Карасев, П.А., Карабешкин, К.В., А.И. Tитов и др. Нелинейный оптический эффект при облучении GaN малыми кластерными ионами// Физика и техника полупроводников, 2014, том 48, вып. 4, с.462466.Google Scholar
Joshi, R.; Carbone, P.; Wang, F.; Kravets, V.; Su, Y.; Grigorieva, I.; Wu, H.; Geim, A.; Nair, R. Precise and Ultrafast Molecular Sieving through Graphene Oxide Membranes. Science 2014, 343, 752754.Google Scholar
Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H. J.; Bao, Y.; Yu, M. Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation. Science 2013, 342, 9598.Google Scholar
Cohen-Tanugi, D.; Grossman, J. C. Water Desalination Across Nanoporous Graphene. Nano letters 2012, 12, 36023608.Google Scholar
Yamada, I.; Matsuo, J.; Toyoda, N.; Kirkpatrick, A. Materials Processing by Gas Cluster Ion Beams. Materials Science and Engineering: R: Reports 2001, 34, 231295.Google Scholar
Inui, N.; Mochiji, K.; Moritani, K.; Nakashima, N. Molecular Dynamics Simulations of Nanopore Processing in a Graphene Sheet by using Gas Cluster Ion Beam. Applied Physics A 2010, 98, 787794.Google Scholar
Payne, M. C., Teter, M. P., Ailan, D. C., Rev. Mod. Phys., Vol. 64, No. 4 ( 1992).Google Scholar
Yoon, Duhee, Moon, Hyerim, Journal of the Korean Physical Society, Vol. 55(2009).Google Scholar
Graf, D., Molitor, F., Ensslin, K. et al. NANO LETTERS Vol. 7 (2007).Google Scholar
Gupta, A., Chen, G., Joshi, P. et al. NANO LETTERS Vol. 6 (2006).Google Scholar
Wang, Hui, Wang, Yufang, Cao, Xuewei, et al. J. Raman Spectrosc. Vol. 40 (2009).Google Scholar
Clark, S. J. and Segall, M. D. and Pickard, C. J. and Hasnip, P. J. and Probert, M. J. and Refson, K. and Payne, M.C. “First principles methods using CASTEP”, Kristall, Journal Z., Volume 220 (2005).Google Scholar
Zabihi, Z., Araghi, H., Nuclear Instruments and Methods in Physics Research B 343 (2015), pp. 4851.Google Scholar