Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T13:27:04.543Z Has data issue: false hasContentIssue false

Impact of Vibrations and Electronic Coherence on Electron Transfer in Flat Molecular Wires

Published online by Cambridge University Press:  07 February 2017

Oscar Grånäs*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
Grigory Kolesov
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Efthimios Kaxiras
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Get access

Abstract

Electron transfer in molecular wires are of fundamental importance for a range of optoelectronic applications. The impact of electronic coherence and ionic vibrations on transmittance are of great importance to determine the mechanisms, and subsequently the type of wires that are most promising for applications. In this work, we use the real-time formulation of time-dependent density functional theory to study electron transfer through oligo-p-phenylenevinylene (OPV) and the recently synthesized carbon bridged counterpart (COPV). A system prototypical of organic photovoltaics is setup by bridging a porphyrin-fullerene dyad, allowing a photo-excited electron to flow between the Zn-porphyrin (ZnP) chromophore and the C60 electron acceptor through the molecular wire. The excited state is described using the fully self-consistent ∆-SCF method. The state is then propagated in time using the real-time TD-DFT scheme, while describing ionic vibrations with classical nuclei. The charge transferred between porphyrin and C60 is calculated and correlated with the velocity autocorrelation functions of the ions. This provides a microscopic insight to vibrational and tunneling contributions to electron transport in linked porphyrin-fullerene dyads. We elaborate on important details in describing the excited state and trajectory sampling.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pittalis, S., Delgado, A., Robin, J., Freimuth, L., Christoffers, J., Lienau, C., and Rozzi, C.A., Adv. Funct. Mater., 25, 20472053 (2015).CrossRefGoogle Scholar
Falke, S.M., Rozzi, C.A., Brida, D., Maiuri, M., Amato, M., Sommer, E., De Sio, A., Rubio, A., Cerullo, G., Molinari, E., and Lienau, C., Science, 344, 10011005 (2014).Google Scholar
de la Torre, G., Giacalone, F., Segura, J.L., Martín, N., and Guldi, D.M., Chem. Eur. J., 11, 12671280 (2005).CrossRefGoogle Scholar
Zhu, X., Tsuji, H., López Navarrete, J.T., Casado, J., and Nakamura, E., J. Am. Chem. Soc., 134, 1925419259 (2012).CrossRefGoogle Scholar
Sukegawa, J., Schubert, C., Zhu, X., Tsuji, H., Guldi, D.M., and Nakamura, E., Nat. Chem., 6, 899905 (2014).Google Scholar
Meng, S. and Kaxiras, E., J. Chem. Phys, 129, 054110 (2008).Google Scholar
Kolesov, G., Grånäs, O., and Hoyt, R., J. Chem. Theory Comput., 12, 466476 (2016).Google Scholar
Kolesov, G., Vinichenko, D., Tritsaris, G.A., Friend, C.M., and Kaxiras, E., J. Phys. Chem. Lett, 6, 16241627 (2015).CrossRefGoogle Scholar
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D., J. Phys. Condens. Matter, 14, 27452779 (2002).Google Scholar
Kleinman, L. and Bylander, D.M., Phys. Rev. Lett., 48, 14251428 (1982).Google Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 77, 38653868 (1996).CrossRefGoogle Scholar
Nguyen, N.L., Borghi, G., Ferretti, A., Dabo, I., and Marzari, N., Phys. Rev. Lett., 114, 166405 (2015).Google Scholar
Hirshfeld, F.L., Theoret. Chim. Acta, 44, 129138 (1977).CrossRefGoogle Scholar
Lopata, K. and Govind, N., J. Chem. Theory. Comput., 7, 13441355 (2011).CrossRefGoogle Scholar
Pfuetzner, S., Meiss, J., Petrich, A., Riede, M., and Leo, K., Appl. Phys. Lett., 94, 223307–4 (2009).Google Scholar
Grånäs, O., Vinichenko, D., and Kaxiras, E., Sci. Rep, 6, 16 (2016).Google Scholar
Monserrat, B., Conduit, G.J., and Needs, R.J., Phys. Rev. B, 90, 184302 (2014).Google Scholar