Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T01:21:30.007Z Has data issue: false hasContentIssue false

In vivo stability of protein coatings on poly lactic co glycolic nanoparticles

Published online by Cambridge University Press:  17 June 2016

Jordi Llop
Affiliation:
Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastián, Spain.
Marco Marradi
Affiliation:
Soft Mater Nanotechnology Laboratory, CIC biomaGUNE, San Sebastián, Spain.
Pengfei Jiang
Affiliation:
MOE Key Laboratory of Macrmolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
Vanessa Gómez-Vallejo
Affiliation:
Radiochemistry Platform, CIC biomaGUNE, San Sebastián, Spain.
Zuriñe Baz
Affiliation:
Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastián, Spain.
María Echeverría
Affiliation:
Soft Mater Nanotechnology Laboratory, CIC biomaGUNE, San Sebastián, Spain.
Changyou Gao
Affiliation:
MOE Key Laboratory of Macrmolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
Sergio E. Moya*
Affiliation:
Soft Mater Nanotechnology Laboratory, CIC biomaGUNE, San Sebastián, Spain.
Get access

Abstract

Submicron-sized poly(lactide-co-glycolide) nanoparticles (PLGA-NPs) stabilised with bovine serum albumin (BSA) are dual radiolabelled using gamma emitters with different energy spectra incorporated into the core and coating. PLGA core is labelled by encapsulation of 111In-doped iron oxide NPs inside PLGA-NPs during NP preparation, while the BSA coating is labelled by electrophilic substitution using 125I. After intravenous administration into rats, energy-discriminant single-photon emission computerised tomography (SPECT) resolved each radioisotope independently. Imaging revealed different fates for the core and coating, with a fraction of the two radionuclides co-localising in the liver and lungs for long periods of time after administration, suggesting that NPs are stable in these organs. The general methodology reported here represents an excellent alternative for visualising the degradation process of multi-labelled NPs in vivo and can be extended to a wide range of engineered NPs.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Parveen, S.; Misra, R.; Sahoo, S. K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed-Nanotechnol. 2012, 8, 147166.CrossRefGoogle Scholar
Frigell, J.; Garcia, I.; Gómez-Vallejo, V.; Llop, J.; Penades, S. 68Ga-Labeled gold glyconanoparticles for exploring blood–brain barrier permeability: Preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J. Am. Chem. Soc. 2014, 136, 449457 CrossRefGoogle ScholarPubMed
Jarrett, B. R.; Gustafsson, B.; Kukis, D. L.; Louie, A. Y. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjugate Chem. 2008, 19, 14961504.CrossRefGoogle ScholarPubMed
Guerrero, S.; Herance, J. R.; Rojas, S.; Mena, J. F.; Gispert, J. D.; Acosta, G. A.; Albericio, F.; Kogan, M. J. Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjugate Chem. 2012, 23, 399408.Google Scholar
Di Mauro, P. P.; Gómez-Vallejo, V.; Baz, Z.; Llop, J.; Borros, S. Novel 18F labeling strategy for polyester-based NPs for in vivo PET-CT imaging. Bioconjugate Chem. 2015, 26(3), 582592.Google Scholar
Pérez-Campaña, C.; Gómez-Vallejo, V.; Puigivila, M.; Martín, A.; Calvo-Fernández, T.; Moya, S.E.; Ziolo, R.F.; Reese, T.; Llop, J. Biodistribution of different sized nanoparticles assessed by Positron Emission Tomography: A general strategy for direct activation of metal oxide particles. ACS Nano 2013, 7, 34983505.Google Scholar
Wang, H.; Kumar, R.; Nagesha, D.; Duclos, R. I. Jr; S., Sridhar; Gatley, S. Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. J., Nucl. Med. Biol. 2015, 42, 6570.Google Scholar
Kreyling, W. G.; Abdelmonem, A. M.; F. Alves, Z. Ali.; Geiser, M.; Haberl, N.; Hartmann, R.; Hirn, S.; Jimenez de Aberasturi, D.; Kantner, K.; Khadem-Saba, G.; Montenegro, J. M.; Rejman, J.; Rojo, T.; Ruiz de Larramendi, I.; Ufartes, R.; Wenk, A.; Parak, W. J. In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnol. 2015, 10, 619623.Google Scholar
Black, K. C. L.; Akers, W. J.; Sudlow, G.; Xu, B.; Laforest, R.; Achilefu, S. Dual Radiolabeling as a Technique to Track Nanocarriers: The Case of Gold Nanoparticles Nanoscale 2015, 7, 440444.Google Scholar
Horák, D.; Semenyuk, N.; Lednický, F. Effect of the reaction parameters on the particle size in the dispersion polymerization of 2-hydroxyethyl and glycidyl methacrylate in the presence of a ferrofluid. J. Polym. Sci. A1 2003, 41, 18481863.Google Scholar
Qiu, Y.; Palankar, R.; Echeverría, M.; Medvede, N.; Moya, S. E.; Delcea, M. Design of hybrid multimodal poly(lactic-co-glycolic acid) polymer nanoparticles for neutrophil labeling, imaging and tracking. Nanoscale 2013, 5, 1262412632.Google Scholar