Published online by Cambridge University Press: 24 April 2017
Vertically aligned BaTiO3 nanowire (NW) arrays on a Ti substrate were adopted for use in piezoelectric energy harvesting device that scavenges electricity from mechanical energy. BaTiO3 NWs were simultaneously grown at the top and bottom surfaces of a Ti substrate by two-step hydrothermal process. To characterized the piezoelectric output performance of the individual NW, we transferred a BaTiO3 single NW that was selected from well-aligned NW arrays onto a flexible substrate and measured the electric signals during the bending/unbending motions. For fabricating a piezoelectric energy harvester (PEH), both NW arrays were sandwiched between two transparent indium tin oxide (ITO)-coated polyethylene terephthalate (PET) plastic films and then packaged with polydimethylsiloxane (PDMS) elastomer. A lead-free BaTiO3 NW array-based PEH produced an output voltage of about 90 V and a maximum current of 1.2 μA under periodically bending motions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.