Published online by Cambridge University Press: 09 October 2020
Methane dehydroaromatization (MDHA) is a direct activation approach to covert methane to value-added chemicals in a single step. This requires no intermediate step, making it a commercially economic approach. Mo supported on HZSM-5/MCM-22 is a well-studied catalyst for this reaction, where Mo sites are responsible for activating methane to C2Hy dimers, which can oligomerize on HZSM-5 Bronsted acid sites to produce aromatics. Challenges for these bifunctional catalysts involve rapid coking and low product yield. In this study, a novel catalytic approach is introduced using group VIB metals (Cr, Mo, W) supported on sulfated zirconia (SZ) solid acid. It is believed that the Bronsted acidity of SZ should help to convert the dimers generated from metal sites to ethylene and aromatics like benzene.
Here, fresh Mo, W and Cr were doped into SZ and characterized using pyridine DRIFTS, ammonia TPD, BET and SEM-EDS.. Catalytic activity for MDHA was ranked as Mo>W>Cr. Mo/SZ showed greater selectivity towards ethylene and benzene, followed by W/SZ, which was selective primarily towards ethylene. Cr/SZ showed the least activity under similar reaction conditions, producing only a small amount of ethylene. Higher catalytic activity for Mo/SZ was possibly due to reduced Mo oxide sites, found from XANES analysis, as well as higher acidity, observed from TPD. Deactivation was mainly due to coking, observed from subsequent TPO analysis. Further investigation is necessary to enhance the activity of this novel catalytic approach before considering for potential industrial applications.