Article contents
Quantifying the Impact of Material-Model Error on Macroscale Quantities-of-Interest Using Multiscale a Posteriori Error-Estimation Techniques
Published online by Cambridge University Press: 20 July 2016
Abstract
An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximate weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. An adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.
Keywords
- Type
- Articles
- Information
- MRS Advances , Volume 1 , Issue 40: Characterization and Modeling of Materials , 2016 , pp. 2789 - 2794
- Copyright
- Copyright © Materials Research Society 2016 This is a work of the U.S. Government and is not subject to copyright protection in the United States.
References
REFERENCES
- 4
- Cited by