Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T21:57:59.524Z Has data issue: false hasContentIssue false

Rheological Characterization of Agarose and Poloxamer 407 (P407) Based Hydrogels

Published online by Cambridge University Press:  05 February 2018

Nehir Kandemir*
Affiliation:
School of Engineering, Newcastle University, Newcastle upon Tyne, UK
Yuqing Xia
Affiliation:
School of Engineering, Newcastle University, Newcastle upon Tyne, UK
Pengfei Duan
Affiliation:
School of Engineering, Newcastle University, Newcastle upon Tyne, UK
Wenjian Yang
Affiliation:
School of Engineering, Newcastle University, Newcastle upon Tyne, UK
Jinju Chen
Affiliation:
School of Engineering, Newcastle University, Newcastle upon Tyne, UK
*
Get access

Abstract

Poloxamer 407 (P407) is a biocompatible thermo-setting polymer, while agarose is a biocompatible thermo-softening material. It is interesting to mix them to examine any possible synergy in thermomechanical properties. In this study, rotational rheometer was adopted to study rheological properties of the mixtures of agarose/P407 gels with different concentrations at various frequencies, strain rates and temperatures. It has revealed that the addition of P407 decreased the gel stiffness by an order of magnitude. For the given combinations in this study, the increase in agarose concentration would increase both the storage modulus and loss modulus of the gel mixtures. The variation in P407 concentration (2.5%-10%) minimally changes the composite moduli. These agarose/P407 gel mixtures also exhibited shear thinning behavior. However, the addition of P407 (2.5%-10%) to agarose gel only has very small effect on thermomechanical properties of agarose gels. The overall transition temperature for these gel mixtures is governed by P407 melting point where the phase change starts around 55°C and the gels completely collapse at the melting temperature of agarose.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this manuscript.

References

REFERENCES

Peppas, N. A. and Khare, A. R., Advanced drug delivery reviews 11 (1-2), 135 (1993).Google Scholar
Richter, A., Paschew, G., Klatt, S., Lienig, J., Arndt, K.-F. and Adler, H.-J. P., Sensors 8 (1), 561581 (2008).Google Scholar
Shewan, H. M. and Stokes, J. R., Journal of Food Engineering 119 (4), 781792 (2013).CrossRefGoogle Scholar
Tamura, H., Furuike, T., Nair, S. V. and Jayakumar, R., Carbohydrate Polymers 84 (2), 820824 (2011).Google Scholar
Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., Feijen, J., Vermonden, T. and Hennink, W. E., Journal of controlled release 190, 254273 (2014).CrossRefGoogle Scholar
Drury, J. L. and Mooney, D. J., Biomaterials 24 (24), 43374351 (2003).CrossRefGoogle Scholar
Hamidi, M., Azadi, A. and Rafiei, P., Advanced drug delivery reviews 60 (15), 16381649 (2008).CrossRefGoogle Scholar
Nicodemus, G. D. and Bryant, S. J., Tissue Engineering Part B: Reviews 14 (2), 149165 (2008).CrossRefGoogle Scholar
Schmidt, J. J., Rowley, J. and Kong, H. J., Journal of biomedical materials research Part A 87 (4), 11131122 (2008).Google Scholar
Van Vlierberghe, S., Dubruel, P. and Schacht, E., Biomacromolecules 12 (5), 13871408 (2011).Google Scholar
Fernández-Cossío, S., León-Mateos, A., Sampedro, F. G. and Oreja, M. T. C., Plastic and reconstructive surgery 120 (5), 11611169 (2007).CrossRefGoogle Scholar
Sakai, S., Kawabata, K., Tanaka, S., Harimoto, N., Hashimoto, I., Mu, C., Salmons, B., Ijima, H. and Kawakami, K., Molecular cancer therapeutics 4 (11), 17861790 (2005).Google Scholar
Buckley, C. T., Thorpe, S. D., O’Brien, F. J., Robinson, A. J. and Kelly, D. J., Journal of the mechanical behavior of biomedical materials 2 (5), 512521 (2009).Google Scholar
Fernandez, E., Lopez, D., Mijangos, C., Duskova-Smrckova, M., Ilavsky, M. and Dusek, K., Journal of Polymer Science Part B: Polymer Physics 46 (3), 322328 (2008).Google Scholar
Miguel, S. P., Ribeiro, M. P., Brancal, H., Coutinho, P. and Correia, I. J., Carbohydrate polymers 111, 366373 (2014).Google Scholar
Cloyd, J. M., Malhotra, N. R., Weng, L., Chen, W., Mauck, R. L. and Elliott, D. M., European spine journal 16 (11), 18921898 (2007).Google Scholar
Dumortier, G., Grossiord, J. L., Agnely, F. and Chaumeil, J. C., Pharmaceutical research 23 (12), 27092728 (2006).CrossRefGoogle Scholar
Dumortier, G., Grossiord, J. L., Zuber, M., Couarraze, G. and Chaumeil, J. C., Drug development and industrial pharmacy 17 (9), 12551265 (1991).CrossRefGoogle Scholar
Edsman, K., Carlfors, J. and Petersson, R., European journal of pharmaceutical sciences 6 (2), 105112 (1998).Google Scholar
Ricci, E. J., Bentley, M., Farah, M., Bretas, R. E. S. and Marchetti, J. M., European Journal of Pharmaceutical Sciences 17 (3), 161167 (2002).Google Scholar
Rosales, A. M. and Anseth, K. S., Nature Reviews Materials 1, 15012 (2016).Google Scholar
Barbucci, H., Biological Properties and Applications. (Springer, 2009).Google Scholar
Harini, M. and Deshpande, A. P., Journal of Rheology 53 (1), 3147 (2009).Google Scholar
Normand, V., Lootens, D. L., Amici, E., Plucknett, K. P. and Aymard, P., Biomacromolecules 1 (4), 730738 (2000).CrossRefGoogle Scholar
Kojarunchitt, T., Hook, S., Rizwan, S., Rades, T. and Baldursdottir, S., International journal of pharmaceutics 408 (1), 2026 (2011).Google Scholar
Pereira, G. G., Dimer, F. A., Guterres, S. S., Kechinski, C. P., Granada, J. E. and Cardozo, N. S. M., Química Nova 36 (8), 11211125 (2013).Google Scholar
Kuo, C. K. and Ma, P. X., Biomaterials 22 (6), 511521 (2001).Google Scholar
Guvendiren, M., Lu, H. D. and Burdick, J. A., Soft matter 8 (2), 260272 (2012).Google Scholar
Fakhari, A., Corcoran, M. and Schwarz, A., Heliyon 3 (8), e00390 (2017).CrossRefGoogle Scholar
Wang, C. C., Huang, W. M., Ding, Z., Zhao, Y. and Purnawali, H., Composites Science and Technology 72 (10), 11781182 (2012).CrossRefGoogle Scholar
Jeong, B., Bae, Y. H., Lee, D. S. and Kim, S. W., Nature 388 (6645), 860-862 (1997).Google Scholar
Jain, A., Kim, Y.-T., McKeon, R. J. and Bellamkonda, R. V., Biomaterials 27 (3), 497504 (2006).CrossRefGoogle Scholar
Rahfoth, B., Weisser, J., Sternkopf, F., Aigner, T., Von Der Mark, K. and Bräuer, R., Osteoarthritis and cartilage 6 (1), 5065 (1998).CrossRefGoogle Scholar
Stokols, S., Sakamoto, J., Breckon, C., Holt, T., Weiss, J. and Tuszynski, M. H., Tissue engineering 12 (10), 27772787 (2006).Google Scholar