Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T05:31:09.679Z Has data issue: false hasContentIssue false

Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics

Published online by Cambridge University Press:  28 January 2019

Richard Brearton
Affiliation:
University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England Magnetic Spectroscopy Group, Diamond Light Source, Fermi Ave, Didcot OX11 0DE, England
Maciej W. Olszewski
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN46656, U.S.A.
Shilei Zhang
Affiliation:
University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England
Morten R. Eskildsen
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN46656, U.S.A.
Charles Reichhardt
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM87545, U.S.A.
Cynthia J. O. Reichhardt
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM87545, U.S.A.
Gerrit van der Laan
Affiliation:
Magnetic Spectroscopy Group, Diamond Light Source, Fermi Ave, Didcot OX11 0DE, England
Thorsten Hesjedal*
Affiliation:
University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England
Get access

Abstract

Magnetic skyrmions are particle-like, topologically protected magnetization entities that are promising candidates for information carriers in racetrack-memory schemes. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Recently, we demonstrated experimentally that chiral skyrmions in Cu2OSeO3 can be effectively manipulated by a magnetic field gradient, leading to a collective rotation of the skyrmion lattice with well-defined dynamics in a radial field gradient. Here, we employ a skyrmion particle model to numerically study the effects of resultant shear forces on the structure of the skyrmion lattice. We demonstrate that anisotropic peak broadening in experimentally observed diffraction patterns can be attributed to extended linear regions in the magnetic field profile. We show that topological (5-7) defects emerge to protect the six-fold symmetry of the lattice under the application of local shear forces, further enhancing the stability of proposed magnetic field driven devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nagaosa, N. and Tokura, Y., Nat. Nanotechnol. 8, 899-911 (2013).CrossRefGoogle Scholar
Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., and Böni, P., Science 323, 915-919 (2009).CrossRefGoogle Scholar
Yu, X. Z., Onose, Y., Kanazawa, N., Park, J. H., Han, J. H., Matsui, Y., Nagaosa, N., and Tokura, Y., Nature 465, 901-904 (2010).CrossRefGoogle Scholar
Yu, X. Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W. Z., Ishiwata, S., Matsui, Y., and Tokura, Y., Nat. Mater. 10, 106-109 (2011).CrossRefGoogle Scholar
Seki, S., Yu, X. Z., Ishiwata, S., and Tokura, Y., Science 336, 198-201 (2012).CrossRefGoogle Scholar
Tokunaga, Y., Yu, X. Z., White, J. S., Rønnow, H. M., Morikawa, D., Taguchi, Y., and Tokura, Y., Nat. Commun. 6, 7638 (2015).CrossRefGoogle Scholar
Jonietz, F., Mühlbauer, S., Pfleiderer, C., Neubauer, A., Münzer, W., Bauer, A., Adams, T., Georgii, R., Böni, P., Duine, R. A., Everschor, K., Garst, M., and Rosch, A., Science 330, 1648-1651 (2010).CrossRefGoogle Scholar
Everschor, K., Garst, M., Binz, B., Jonietz, F., Mühlbauer, S., Pfleiderer, C., and Rosch, A., Phys. Rev. B 86, 054432 (2012).CrossRefGoogle Scholar
Yu, X. Z., Kanazawa, N., Zhang, W. Z., Nagai, T., Hara, T., Kimoto, K., Matsui, Y., Onose, Y., and Tokura, Y., Nat. Commun. 3, 988 (2012).CrossRefGoogle Scholar
Iwasaki, J., Mochizuki, M., and Nagaosa, N., Nat. Commun. 4, 1463 (2013).CrossRefGoogle Scholar
Woo, S., Litzius, K., Krüger, B., Im, M.-Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R. M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.-A., Fischer, P., Kläui, M., and Beach, G. S. D., Nat. Mater. 15, 501-506 (2016).CrossRefGoogle Scholar
Sampaio, J., Cros, V., Rohart, S., Thiaville, A., and Fert, A., Nat. Nanotechnol. 8, 839-844 (2013).CrossRefGoogle Scholar
Zhang, S. L. Wang, W. W., Burn, D. M., Peng, H., Berger, H., Bauer, A., Pfleiderer, C., van der Laan, G., and Hesjedal, T., Nat. Commun. 9, 2115 (2018).CrossRefGoogle Scholar
Thiele, A. A., Phys. Rev. Lett. 30, 230-233 (1973).CrossRefGoogle Scholar
Reichhardt, C., Ray, D., and Reichhardt, C. O., Phys. Rev. Lett. 114, 217202 (2015).CrossRefGoogle Scholar
Olszewski, M. W., Eskildsen, M. R., Reichhardt, C., and Reichhardt, C. O., New J. Phys. 20, 023005 (2018).CrossRefGoogle Scholar
Lin, S. Z., Reichhardt, C., Batista, C. D., and Saxena, A., Phys. Rev. B 87, 214419 (2013).CrossRefGoogle Scholar