Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T14:38:44.512Z Has data issue: false hasContentIssue false

Study of the temperature effect on the morphology and structure of ZnS nanoparticles synthesized by hydrothermal method

Published online by Cambridge University Press:  16 November 2020

Claudia J. Bahena-Martínez
Affiliation:
Master in Materials Science from the Facultad de Química, Universidad Autónoma del Estado de México, Av. Paseo Colón-Av. Paseo Tollocan, 50000, Toluca, México State, México Centro Conjunto de Investigación en Química Sustentable, CCIQS UAEM-UNAM, Highway Km. 14.5, San Cayetano, Toluca - Atlacomulco, 50200, Toluca de Lerdo, México.
Nayely Torres-Gómez
Affiliation:
Tecnológico Nacional de México – Campus Toluca. Av. Tecnológico, Bellavista Metepec, 52149, México, México.
Alfredo R. Vilchis-Néstor
Affiliation:
Centro Conjunto de Investigación en Química Sustentable, CCIQS UAEM-UNAM, Highway Km. 14.5, San Cayetano, Toluca - Atlacomulco, 50200, Toluca de Lerdo, México.
Get access

Abstract

The control over the materials structure is crucial for the modulation of its properties, in order to achieve this control is important to know the formation mechanism of the material as function of parameters used. For this purpose, the effect of temperature (120, 140, 160 and 180 °C) on the hydrothermal synthesis of zinc sulphide is evaluated and a proposal of the sequence of reactions formation of zinc sulphur is presented. ZnS nanostructures with blend-phase were obtained, the temperature increment induces the growth of the nanostructure ranged between .62 and 12.72 nm, furthermore, increase the crystallinity of the ZnS nanostructures. The proposed reactions suggest the formation of a complex of thioacetamide with the Zn+2 and its subsequent decomposition into ZnS.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Esakkiammal, A, Malathi, A, Ujjal, KS, Balaprasad, A. Honey Mediated Green Synthesis of Photoluminiscent Zns Nano/Micro Particles. Res Med Eng Sci. 2018;3(2).Google Scholar
Kaur, N, Kaur, S, Singh, J, Rawat, M. A Review on Zinc Sulphide Nanoparticles: From Synthesis, Properties to Applications. J Bioelectron Nanotechnol 2016;1(1):5.Google Scholar
Subhajit, B, Soumitra, K. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. IOP Publishing. 2008;19(4):11.Google Scholar
Yong, CZ, Gui, YW, Xiao, YH, Wei, C. Solvothermal synthesis of uniform hexagonal-phase ZnS nanorods using a single-source molecular precursor. Materials Research Bulletin. 2006;41(10):18171824.Google Scholar
Kanti, KA, Sekhar, TC, Kumbhakar, P. Morphology controlled synthesis of wurtzite ZnS nanostructures through simple hydrothermal method and observation of white light emission from ZnO obtained by annealing the synthesized ZnS nanostructures. J Mater Chem C. 2014;2(21):43384346.CrossRefGoogle Scholar
Mehta, N. Applications of chalcogenide glasses in electronics and optoelectronics: A Review. Journal of scientific and industrial research. 2006;65(10):777786Google Scholar
Li, J, Liu, M, Jiang, J, Liu, B, Tong, H, Xu, Z, Yang, C, Qian, D. Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow, Sensors and amp; Actuators: B. Chemical. 2019;288:552563.Google Scholar
Hosseinpoura, Z, Arefiniac, Z, Hosseinpoura, S. Morphology and phase control of hierarchical copper sulfide superstructures as efficient catalyst Materials Science in Semiconductor Processin. 2019;100:4855.CrossRefGoogle Scholar
Sofronov, DS, Kamneva, NN, Bulgakova, AV, Mateychenko, PV, Baumer, VN, Belikov, KN, Chebanov, VA, Lavrynenko, SN, Mamalis, AG. Effect of anions and medium pH on the formation of ZnS micro- and nanoparticles from thiourea solutions. J Biological Physics and Chemistry. 2013;13(3):8589.CrossRefGoogle Scholar
Grases, FF, Costa, BA, Söhnel, O. Crystallization in solution. Reverté (España) 2000. 716.Google Scholar
Riaño, CN. Fundamentals of basic analytical chemistry. University of Caldas (Colombia) 2007. 130.Google Scholar
Buscarons, UF, Capitán, GF, Capitán, V. Systematic qualitative inorganic analysis. RevertéGoogle Scholar
Dantas, JM, Silva, ML, Filho, PF. A study in analytical chemistry and identification of group III conditions. Educ. Quím. 2011;22(1):3237.Google Scholar
Oladeji, I.O. and Chow, L. A study of the effects of ammonium salts on chemical bath deposited zinc sulfide thin films. Thin Solid Films 1999;339(1–2):14153CrossRefGoogle Scholar
Anand, MV, Nanda, K. Kinetics of Decomposition Reactions of Acetic Acid Using DFT Approach. J Open Chemical Engineering. 2018;12:1423.Google Scholar
Blake, PG, Jackson, GE. The Thermal Decomposition of Acetic Acid. Journal of Chemical SOC. B. 1968:11531155CrossRefGoogle Scholar
Sobia, D, Muhammad, S, Azhar, I. Synthesis of Zinc Sulphide Nanostructures by Co-precipitation: Effects of Doping on Electro-optical Properties Kenkyu. J Nanotechnology y Nanoscience 1. 2015:3439.Google Scholar
Yun, H, Zhaorong, W, Bo, W, Bing, S, Qun, D, Pengxian, F. Photoluminescence of ZnS: Mn quantum dot by hydrothermal method. AIP Advances. 2018;8(1).Google Scholar
Coates, J.P. A Practical Approach to the Interpretation of Infrared Spectra. Encyclopedia of Analytical Chemistry, Meyers R.A. (Chichester). 2000:10815–10837Google Scholar