Published online by Cambridge University Press: 29 March 2016
We demonstrate a compact tunable photonic modulator driven by surface acoustic waves (SAWs) in the low GHz frequency range. The device follows a well-known Mach-Zehnder interferometer (MZI) structure with three output channels, built upon multi-mode interference (MMI) couplers. The light continuously switches paths between the central and the side channels, avoiding losses and granting a 180◦-dephasing synchronization between them. The modulator was monolithically fabricated on (Al,Ga)As, and can be used as a building block for more complex photonic functionalities. It can also be implemented in other material platforms such as Silicon or (In,Ga)P. Light modulated at multiples of the fundamental acoustic frequency can be accomplished by adjusting the applied acoustic power. An excellent agreement between theory and experiment is achieved.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.