Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-31T01:32:42.676Z Has data issue: false hasContentIssue false

Ultrafast Laser Induced Subwavelength Periodic Surface Structures on Semiconductors/Metals and Application to SERS Studies

Published online by Cambridge University Press:  23 June 2016

V. Saikiran
Affiliation:
School of Physics, University of Hyderabad, Hyderabad, India, 500046.
Mudasir H Dar
Affiliation:
School of Physics, University of Hyderabad, Hyderabad, India, 500046.
R. Kuladeep
Affiliation:
School of Physics, University of Hyderabad, Hyderabad, India, 500046.
Narayana Rao Desai*
Affiliation:
School of Physics, University of Hyderabad, Hyderabad, India, 500046.
Get access

Abstract

In this manuscript a simple approach is discussed to fabricate uniform periodic surface structures on semiconductor surfaces by femtosecond laser irradiation for surface-enhanced Raman spectroscopy (SERS) applications. Gold films having different thickness are first deposited on semiconductor silicon (Si) surfaces and then periodic surface structures are fabricated by femtosecond laser irradiation. The periodic structures are observed to be uniform over a large area with chain type structure formation of gold and Si. We have studied the formation of these surface structures on Si surface by having different thickness gold films deposited on Si substrates. This approach of the fabrication of surface structures with the assistance of gold film is found to help in local field enhancement and hence work as suitable substrate for the SERS experiments. The conditions for achieving high enhancement factor in SERS with different gold film thicknesses are explored in detail. We also present here the formation of low frequency ripples on Silicon (Si) and high frequency as well as low frequency ripples on titanium (Ti) surface in air and water environments by irradiation with fs laser pulses. Different morphologies were observed on Ti surface depending upon the laser irradiation parameters and the surrounding dielectric medium.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vorobyev, A.Y., Guo, C. J. Laser Photonics Rev. 7, 385 (2013).CrossRefGoogle Scholar
Crouch, C. H., Carey, J. E., Warrender, J. M., Aziz, M. J., Mazur, E. Appl. Phys. Lett. 84, 1850 (2004).CrossRefGoogle Scholar
Vorobyev, A., Makin, V., Guo, C., Phys. Rev. Lett. 102, 234301 (2009).CrossRefGoogle Scholar
Yasumaru, N., Miyazaki, K., Kiuchi, J., Appl. Surf. Sci. 254, 2364 (2008).CrossRefGoogle Scholar
Gattass, R. R., Mazur, Eric Nature Photonics 2, 219 (2008).CrossRefGoogle Scholar
Osellame, R., Maselli, V., Vazquez, R. M., Ramponi, R. and Cerullo, G. Appl. Phys. Lett. 90, 231118 (2007)CrossRefGoogle Scholar
Su, S., Li, J., Lee, G. C. B., Sugden, K., Webb, D., and Ye, H., Appl. Phys. Lett. 102, 231913 (2013).CrossRefGoogle Scholar
Hans, M., Muller, F., Grandthyll, S., Hufner, S., Mucklich, F., Appl. Surf. Sci. 263, 416 (2012).CrossRefGoogle Scholar
Bonse, J., Hohm, S., Rosenfeld, A., Kruger, J., Appl. Phys. A 110, 547 (2013).CrossRefGoogle Scholar
Kuntumalla, M. K., Rajamudili, K., Desai, N. R., Srikanth, V. V. S. S., Appl. Phys. Lett. 104, 161607, (2014).CrossRefGoogle Scholar
Chakravarty, U., Naik, P. A., Chakera, J. A., Upadhyay, A., Gupta, P. D., Appl. Phys. A 115, 1457 (2014).CrossRefGoogle Scholar
Yuan, Y., Jiang, L., Li, X., Wang, C., Xiao, H., Lu, Y., Tsai, H., J. Phys. D: Appl. Phys. 45 175301, (2012).CrossRefGoogle Scholar
Kuladeep, R., Sahoo, C., Narayana Rao, D., Appl. Phys. Lett. 104, 222103, (2014).CrossRefGoogle Scholar
Albu, C., Dinescu, A., Filipescu, M., Ulmeanu, M., Zamfirescu, M., Appl. Surf. Sci. 278, 347 (2013).CrossRefGoogle Scholar
Chandra, S.R. Nathala, Ali Ajami, A. Ionin, A., Kudryashov, S. I., Makarov, S. V., Ganz, Thomas, Assion, A., Husinsky, W., Opt. Express 23, 5915 (2015).Google Scholar
Tan, X., Jiang, L., Hu, J., Liu, P., Wang, A., Lu, Y. Chinese. Opt. Lett. 13 (11), 111401 (2015).Google Scholar
Zhu, Z Q, Yan, Z D, Zhan, P, Wang, Z L, Sci China-Phys Mech Astron. 56, 1806 (2013).CrossRefGoogle Scholar
Yang, Q. Q., Li, X., Jiang, L., Zhang, N., Zhang, G. M., Shi, X. S., Zhang, K. H., Hu, J., and Lu, Y. F., Opt. Lett. 40, 2045 (2015).CrossRefGoogle Scholar
Feng, Pin, Jiang, Lan, Li, Xin, Rong, Wenlong, Zhang, Kaihu, and Cao, Qiang, Appl. Opt. 54, 1314 (2015).CrossRefGoogle Scholar
Huang, M., Zhao, F. L., Cheng, Y., Xu, N. S., and Xu, Z. Z. ACS Nano 3, 4062 (2009).CrossRefGoogle Scholar
Chakravarty, U., Ganeev, R. A., Naik, P. A., Chakera, J. A., Babu, M., Gupta, P. D., J. Appl. Phys. 109, 084347, (2011).Google Scholar
Tsibidis, G. D., Barberoglou, M., Loukakos, P. A., Stratakis, E., and Fotakis, C., Phys. Rev. B 86, 115316 (2012).CrossRefGoogle Scholar
Dar, M. H., Kuladeep, R., Saikiran, V., Rao, D. N. Appl. Surf. Sci. 371, 479 (2016).CrossRefGoogle Scholar
Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Seleznev, S.V., Sinitsyn, D.V., Kaminskaya, T.P., Popov, V.V., JEPT Lett. 101, 350 (2015).Google Scholar
Miyaji, G., Miyazaki, K., Zhang, K., Yoshifuji, T., and Fujita, J., Opt. Express 20, 14848 (2012).CrossRefGoogle Scholar
Kudryashov, S. I., Makarov, S. V., Ionin, A. A., Nathala, C. S. R., Ajami, A., Ganz, T., Assion, A., Husinsky, W., Opt. Lett. 40, 49674970 (2015).CrossRefGoogle Scholar
Lee, J. B. and Lee, S. H., Mater. Trans. 52, 1492 (2011).CrossRefGoogle Scholar
Upender, G., Satyavathi, R., Raju, B., Shadak Alee, K., Narayana Rao, D., Bansal, C., Chem. Phys. Lett. 511 (2011) 309.CrossRefGoogle Scholar
Botta, Raju, Upender, G., Sathyavathi, R., Narayana Rao, D., Bansal, C., Mater. Chem. Phys. 137 (2013) 699.CrossRefGoogle Scholar
Le Ru, E.C., Blackie, E., Meyer, M., Etchegoin, P.G., J. Phys. Chem. C 111, 13794 (2007).CrossRefGoogle Scholar