Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T03:44:39.121Z Has data issue: false hasContentIssue false

An amorphous-to-crystalline phase transition within thin silicon films grown through ultra-high-vacuum evaporation on fused quartz substrates

Published online by Cambridge University Press:  11 April 2016

Farida Orapunt
Affiliation:
Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
Li-Lin Tay
Affiliation:
Measurement Science and Standards, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
David J. Lockwood
Affiliation:
Measurement Science and Standards, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Jean-Marc Baribeau
Affiliation:
Information and Communication Technologies, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Joanne C. Zwinkels
Affiliation:
Measurement Science and Standards, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Mario Noël
Affiliation:
Measurement Science and Standards, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
Stephen K. O’Leary*
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Get access

Abstract

A number of thin silicon films are prepared through ultra-high-vacuum evaporation on optical quality fused quartz substrates with different growth temperatures. Through an analysis of grazing incidence X-ray diffraction results, a phase transition, from amorphous-to-crystalline, is found corresponding to increases in the growth temperature. The corresponding Raman spectra are also observed to change their form as the films go through this phase transition. Using a Raman peak decomposition process, this phase transition is then quantitatively characterized through the determination of the amount of intermediate-range order and the crystalline volume fraction for the various growth temperatures considered in this analysis. The possible device consequences of these results are then commented upon.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Terakawa, A., Sol. Energy Mater. Sol. Cells 119, 204 (2013).CrossRefGoogle Scholar
Street, R. A., Hydrogenated Amorphous Silicon (Cambridge, New York, 1991).CrossRefGoogle Scholar
Melskens, J., Smets, A. H. M., Schouten, M., Eijt, S. W. H., Schut, H., and Zeman, M., IEEE J. Photovoltaics 3, 65 (2013).Google Scholar
Melskens, J., Schouten, M., Mannheim, A., Vullers, A. S., Mohammadian, Y., Eijt, S. W. H., Schut, H., Matsui, T., Zeman, M., and Smets, A. H. M., IEEE J. Photovoltaics 4, 1331 (2014).Google Scholar
Stuckelberger, M., Billet, A., Riesen, Y., Boccard, M., Despeisse, M., Schüttauf, J.-W., Haug, F.-J., and Ballif, C., Prog. Photovoltaics 24, 446 (2016).Google Scholar
Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).Google Scholar
Papaconstantopoulos, D. A. and Economou, E. N., Phys. Rev. B 24, 7233 (1981).Google Scholar
Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
Biswas, R. and Pan, B. C., Appl. Phys. Lett. 72, 371 (1998).Google Scholar
Biswas, R. and Li, Y.-P., Phys. Rev. Lett. 82, 2512 (1999).Google Scholar
Brockhoff, A. M., Ullersma, E. H. C., Meiling, H., Habraken, F. H. P. M., and van der Weg, W. F., Appl. Phys. Lett. 73, 3244 (1998).Google Scholar
Schmidt, K. J., Lin, Y., Beaudoin, M., Xia, G., O’Leary, S. K., Yue, G., and Yan, B., Can. J. Phys. 92, 857 (2014).CrossRefGoogle Scholar
Fogal, B. J., O’Leary, S. K., Lockwood, D. J., Baribeau, J.-M., Noël, M., and Zwinkels, J. C., Solid State Commun. 120, 429 (2001).Google Scholar
O’Leary, S. K., Fogal, B. J., Lockwood, D. J., Baribeau, J.-M., Noël, M., and Zwinkels, J. C., J. Non-Cryst. Solids 290, 57 (2001).Google Scholar
Lockwood, D. J., Baribeau, J.-M., Noël, M., Zwinkels, J. C., Fogal, B. J., and O’Leary, S. K., Solid State Commun. 122, 271 (2002).Google Scholar
Tay, L.-L., Lockwood, D. J., Baribeau, J.-M., Noël, M., Zwinkels, J. C., Orapunt, F., and O’Leary, S. K., Appl. Phys. Lett. 88, 121920 (2006).Google Scholar
Gupta, S., Katiyar, R. S., Morell, G., Weisz, S. Z., and Balberg, I., Appl. Phys. Lett. 75, 2803 (1999).Google Scholar
Sokolov, A. P, Shebanin, A. P, Golikova, O. A, and Mezdrogina, M. M., J. Phys.: Condens. Matter 3, 9887 (1991).Google Scholar
Tay, L., Lockwood, D. J., Baribeau, J.-M., Wu, X., and Sproule, G. I., J. Vac. Sci. Technol. A 22, 943 (2004).Google Scholar
Shah, A., Ed., Thin-film silicon solar cells (EPFL Press, Lausanne, 2010).Google Scholar