Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T22:21:22.681Z Has data issue: false hasContentIssue false

Characterization of Graphene Gate Electrodes for Metal-Oxide-Semiconductor Devices

Published online by Cambridge University Press:  19 January 2017

Yanbin An
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611USA.
Aniruddh Shekhawat
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611USA. Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611USA.
Ashkan Behnam
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA.
Eric Pop
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA.
Ant Ural*
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611USA.
*
Get access

Abstract

We fabricate and characterize metal-oxide-semiconductor (MOS) devices with graphene as the gate electrode, 5 or 10 nm thick silicon dioxide as the insulator, and silicon as the semiconductor substrate. We find that Fowler-Nordheim tunneling dominates the gate current for the 10 nm oxide device. We also study the temperature dependence of the tunneling current in these devices in the range 77 to 300 K and extract the effective tunneling barrier height as a function of temperature for the 10 nm oxide device. Furthermore, by performing high frequency capacitance-voltage measurements, we observe a local capacitance minimum under accumulation, particularly for the 5 nm oxide device. By fitting the data using numerical simulations based on the modified density of states of graphene in the presence of charged impurities, we show that this local minimum results from the quantum capacitance of graphene. These results provide important insights for the heterogeneous integration of graphene into conventional silicon technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, J. K., Song, S. M., Mun, J. H., and Cho, B. J., Nano Lett. 11, 5383 (2011).CrossRefGoogle Scholar
Misra, A., Waikar, M., Gour, A., Kalita, H., Khare, M., Aslam, M., and Kottantharayil, A., Appl. Phys. Lett. 100, 233506 (2012).Google Scholar
An, Y., Behnam, A., Pop, E., and Ural, A., Appl. Phys. Lett. 102, 013110 (2013).Google Scholar
An, Y., Behnam, A., Pop, E., Bosman, G., and Ural, A., J. Appl. Phys. 118, 114307 (2015).CrossRefGoogle Scholar
Sze, S. M., Physics of Semiconductor Devices (Wiley-Interscience, 1981).Google Scholar
Schroder, D. K., Semiconductor Material and Device Characterization (Wiley-Interscience, 1998).Google Scholar
Salace, G., Hadjadj, A., Petit, C., and Jourdain, M., J. Appl. Phys. 85, 7768 (1999).Google Scholar
Pananakakis, G., Ghibaudo, G., Kies, R., and Papadas, C., J. Appl. Phys. 78, 2635 (1995).Google Scholar
Weinberg, Z. A., J. Appl. Phys. 53, 5052 (1982).Google Scholar
Fang, T., Konar, A., Xing, H., and Jena, D., Appl. Phys. Lett. 91, 092109 (2007).CrossRefGoogle Scholar
John, D. L., Castro, L. C., and Pulfrey, D. L., J. Appl. Phys. 96, 5180 (2004).Google Scholar
Giannazzo, F., Sonde, S., Raineri, V., and Rimini, E., Nano Lett. 9, 23 (2009).Google Scholar
Xia, J., Chen, F., Li, J., and Tao, N., Nat. Nanotechnol. 4, 505 (2009).Google Scholar
Droscher, S., Roulleau, P., Molitor, F., Studerus, P., Stampfer, C., Ensslin, K., and Ihn, T., Appl. Phys. Lett. 96, 152104 (2010).Google Scholar
Xu, H., Zhang, Z., and Peng, L.-M., Appl. Phys. Lett. 98, 133122 (2011).Google Scholar
Wang, L., Wang, W., Xu, G., Ji, Z., Lu, N., Li, L., and Liu, M., Appl. Phys. Lett. 108, 013503 (2016).Google Scholar
Kliros, G. S., in Graphene Science Handbook: Size-Dependent Properties, edited by liofkhazraei, M., Ali, N., Milne, W. I., Ozkan, C. S., Mitura, S., and Gervasoni, J. L. (CRC Press, 2016).Google Scholar
Datta, S., Quantum Transport: Atom to Transistor (Cambridge University Press, 2005).Google Scholar
Li, Q., Hwang, E. H., and Das Sarma, S., Phys. Rev. B 84, 115442 (2011).Google Scholar