Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-21T17:44:25.022Z Has data issue: false hasContentIssue false

Dynamic Evolution of Defect Structures during Spall Failure of Nanocrystalline Al

Published online by Cambridge University Press:  10 March 2016

Kathleen Coleman
Affiliation:
Department of Materials Science and Engineering, and Institute of Materials Science, University of Connecticut, Storrs, CT, United States
Garvit Agarwal
Affiliation:
Department of Materials Science and Engineering, and Institute of Materials Science, University of Connecticut, Storrs, CT, United States
Avinash M. Dongare*
Affiliation:
Department of Materials Science and Engineering, and Institute of Materials Science, University of Connecticut, Storrs, CT, United States
*
*Corresponding author, electronic mail: dongare@uconn.edu
Get access

Abstract

The dynamic evolution and interaction of defects under the conditions of shock loading in nanocrystalline Al with an average grain size of 20 nm is investigated using molecular dynamics simulations for an impact velocity of 1 km/s. Four stages of defect evolution are identified during shock deformation and failure that correspond to the initial shock compression (I), the propagation of the compression wave (II), the propagation and interaction of the reflected tensile waves (III), and the nucleation, growth, and coalescence of voids (IV). The results suggest that the spall strength of the nanocrystalline Al system is attributed to a high density of Shockley partials and a slightly lower density of twinning partials (twins) in the material experiencing the peak tensile pressures.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jia, D., Ramesh, K. T., Ma, E., Lu, L., Lu, K., Scripta Mater. 45, 613 (2001)Google Scholar
Bringa, E. M., Caro, A., Wang, Y., Victoria, M., McNaney, J. M., Remington, B. A., Smith, R. F., Torralva, B. R., Van Swygenhoven, H., Science 309, 1838 (2005)Google Scholar
Meyers, M. A., Dynamic Behavior of Materials (Wiley-Interscience, New York, 1994)Google Scholar
Knott, J. F., Fundamentals of Fracture Mechanics (Butterworths, London, 1973)Google Scholar
Traiviratana, S., Bringa, E. M., Bensona, D. J. and Meyers, M. A., Acta Mater. 56, 3874 (2008)Google Scholar
Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., and Brenner, D. W., Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates, Phys. Rev. B 80, 104108 (2009)Google Scholar
Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., Brenner, D. W., Atomic scale studies of spall behavior in nanocrystalline Cu, J. Appl. Phys. 108, 113518 (2010)CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., Wu, X.L., Deformation twinning in nanocrystalline materials, Progress in Materials Science 57, 1(2012)Google Scholar
Li, X., Wei, Y., Lu, L., Lu, K., and Gao, H., Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464, 877 (8 April 2010)Google Scholar
Lu, L., Chen, X., Huang, X., Lu, K., Revealing the Maximum Strength in Nanotwinned Copper, Science 323, 607 (2009)CrossRefGoogle ScholarPubMed
Mishin, Y., Farkas, D., Mehl, M.J., and Papaconstantopoulos, D.A., Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B 59, 3393 (1999)Google Scholar
Derlet, P. M. and Van Swygenhoven, H., Atomic positional disorder in fcc metal nanocrystalline grain boundaries, Phys. Rev. B 67, 014202 (2003)Google Scholar
Stukowski, A and Albe, K., Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Modelling Simul. Mater. Sci. Eng. 18, 085001 (2010)CrossRefGoogle Scholar
Stukowski, A., Bulatov, V. V., Arsenlis, A., Automated identification and indexing of dislocations in crystal interfaces, Modelling Simul. Mater. Sci. Eng. 20 (2012)Google Scholar
Stukowski, A., Computational Analysis Methods in Atomistic Modeling of Crystals, JOM 66, 399 (2014)Google Scholar
Arzaghi, M., Beausir, B., Toth, L. S., Contribution of non-octahedral slip to texture evolution of fcc polycrystals in simple shear, Acta Mater. 57, 2440 (2009)CrossRefGoogle Scholar
Mackenchery, K., Valisetty, R., Stukowski, A., Namburu, R., Rajendran, A. M., and Dongare, A. M., Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu, J. Appl. Phys. 119, 044301 (2016)Google Scholar