Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T16:59:18.969Z Has data issue: false hasContentIssue false

Enhancement of Sensitivity of the Solution-Phase Localized Surface Plasmon by a Nanostructured Substrate

Published online by Cambridge University Press:  18 May 2016

Shengjie Zhai
Affiliation:
Department of Mechanical Engineering University of Nevada, Las Vegas, NV, 89154
Hui Zhao*
Affiliation:
Department of Mechanical Engineering University of Nevada, Las Vegas, NV, 89154
*
1 All correspondence should be directed to this author (hui.zhao@unlv.edu).
Get access

Abstract

We describe a simple and inexpensive method to enhance the sensitivity or improve the detection limit of solution-phase localized surface plasmon (LSPR) sensors of metallic nanoparticles. The substrate surface contains metallic nanostructures which are replicated from DVD disks via the standard soft lithography. By mixing BSA molecules with nanoparticle solution, we demonstrate that the wavelength shift due to the absorption of BSA molecules on nanoparticle surfaces is amplified by more than an order of magnitude in comparison to that over a smooth flat surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., Nuzzo, R. G., Chem. Rev. 2008, 108, 494.Google Scholar
Willets, K. A., Van Duyne, R. P., Annu Rev Phys Chem 2007, 58, 267.Google Scholar
Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., Van Duyne, R. P., Nat. Mater. 2008, 7, 442.Google Scholar
Yao, J., Le, A.-P., Gray, S. K., Moore, J. S., Rogers, J. A., Nuzzo, R. G., Adv. Mater. 2010, 22, 1102.Google Scholar
Zhai, S., Jiang, Y., Zhao, H., Das, B., Adv. Opt. Mater. 2014, 2, 632.Google Scholar
Sheehan, P. E., Whitman, L. J., Nano Lett. 2005, 5, 803.Google Scholar
Nair, P. R., Alam, M. A., Appl. Phys. Lett. 2006, 88, 233120.Google Scholar
Nusz, G. J., Marinakos, S. M., Curry, A. C., Dahlin, A., Höök, F., Wax, A., Chilkoti, A., Anal. Chem. 2008, 80, 984.Google Scholar
Sannomiya, T., Vörös, J., Trends Biotechnol. 2011, 29, 343.Google Scholar
Wu, H.-J., Henzie, J., Lin, W.-C., Rhodes, C., Li, Z., Sartorel, E., Thorner, J., Yang, P., Groves, J. T., Nat. Methods 2012, 9, 1189.CrossRefGoogle Scholar
Guo, L., Jackman, J. A., Yang, H.-H., Chen, P., Cho, N.-J., Kim, D.-H., Nano Today 2015, 10, 213.Google Scholar
Xia, Y., Whitesides, G. M., Annu. Rev. Mater. Sci. 1998, 28, 153.Google Scholar
McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J. A., Whitesides, G. M., Electrophoresis 2000, 21, 27.Google Scholar
Liu, S. H., Han, M. Y., Adv. Funct. Mater. 2005, 15, 961967.Google Scholar
Guo, L., Jackman, J. A., Yang, H.-H., Chen, P., Cho, N.-J., Kim, D.-H., Nano Today 2015, 10, 213.CrossRefGoogle Scholar
Dahlin, A. B., Wittenberg, N. J., Höök, F., Oh, S.-H., Nanophotonics 2013, 2, 83.CrossRefGoogle Scholar
Haes, A. J., Van Duyne, R. P. A., J. Am. Chem. Soc. 2002, 124, 10596.Google Scholar
Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N., Yee, S. S., Langmuir 1998, 14, 5636.Google Scholar
Zeng, S., Baillargeat, D., Ho, H.-P., Yong, K.-T., Chem. Soc. Rev. 2014, 43, 3426.Google Scholar
Lezec, H. J., Degiron, A., Devaux, E., Linke, R. A., Martin-Moreno, L., Garcia-Vidal, F. J., Ebbesen, T. W., Science 2002, 297, 820.CrossRefGoogle Scholar
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., Wolff, P. A., Nature 1998, 391, 667.Google Scholar
Yeh, W.-H., Petefish, J. W., Hillier, A. C., Anal. Chem. 2011, 83, 6047 Google Scholar