Article contents
Fabrication of an Electrochemical Sensor for Glucose Detection using ZnO Nanorods
Published online by Cambridge University Press: 24 February 2016
Abstract
An electrochemical glucose sensor based on zinc oxide (ZnO) nanorods is fabricated, characterized and tested. The ZnO nanorods are synthesized on indium titanium oxide (ITO) coated glass substrate, using the hydrothermal sol-gel technique. The working principle of the sensor under investigation is based on the electrochemical reaction taking place between cathode and anode, in the presence of an electrolyte. A platinum plate, used as the cathode and Nafion/Glucose Oxidase/ZnO nanorods/ITO-coated glass substrate used as anode, is immersed in pH 7.0 phosphate buffer solution electrolyte to test for the presence of glucose. Several amperometric tests are performed on the fabricated sensor to determine the response time, sensitivity and limit of detection of the sensor. A fast response time less than 3 s with a high sensitivity of 1.151 mA cm-2mM-1 and low limit of detection of 0.089 mM is reported. The glucose sensor is characterized using the cyclic voltammetry method in the range from -0.8 – 0.8 V with a voltage scan rate of 100 mV/s.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 5
- Cited by