Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-21T22:52:09.431Z Has data issue: false hasContentIssue false

Ferroic twin domains in metal halide perovskites

Published online by Cambridge University Press:  23 September 2019

Yongtao Liu
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
Alex Belianinov
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
Liam Collins
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
Roger Proksch
Affiliation:
Asylum Research, An Oxford Instruments Company, Santa Barbara, California93117, United States
Anton V. Ievlev
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
Bin Hu
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
Sergei V. Kalinin
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
Olga S. Ovchinnikova*
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
*
*Author to whom correspondence should be addressed. Olga S. Ovchinnikova Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 1 Bethel Valley Rd Oak Ridge TN, 37831-6493 ovchinnikovo@ornl.gov.
Get access

Abstract

An emerging family of materials—metal halide perovskites (MHPs)—have made incredible achievements in optoelectronics in the past decade. Owing to its potential role in optoelectronic properties, the ferroic state of MHPs has been investigated by lots of researchers. Here, we review the literature regarding investigations into possible ferroic behaviors in MHPs. We summarize the recent discoveries of ferroic twin domains in MHPs. We examine the ferroelasticity and the ferroelectricity of these twin domains. Several properties relevant to the twin domains are critically analyzed, including crystallographic structure, mechanical variation, chemical variation, etc. Finally, we discussed the effects of these domains on materials’ optoelectronic properties and their potential roles in photovoltaic action.

Type
Review Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

References

Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 1 (2019).Google Scholar
Xu, W. et al. Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Advanced Energy Materials 8, 1703178 (2018).CrossRefGoogle Scholar
Liu, T. et al. Cesium Halides-Assisted Crystal Growth of Perovskite Films for Efficient Planar Heterojunction Solar Cells. Chemistry of Materials 30, 5264-5271 (2018).CrossRefGoogle Scholar
Zhou, T. et al. Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 1901242 (2019).CrossRefGoogle ScholarPubMed
Lai, H. et al. Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. Journal of the American Chemical Society 140, 11639-11646 (2018).CrossRefGoogle ScholarPubMed
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245 (2018).CrossRefGoogle ScholarPubMed
Yi, N. et al. Tailoring the Performances of Lead Halide Perovskite Devices with Electron‐Beam Irradiation. Advanced Materials 29, 1701636 (2017).CrossRefGoogle ScholarPubMed
Xu, W. et al. Room‐Temperature‐Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Single‐Wall Carbon Nanotubes. Advanced Functional Materials 28, 1705541 (2018).CrossRefGoogle Scholar
Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nature Photonics 12, 528 (2018).CrossRefGoogle Scholar
Long, G. et al. Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Advanced Materials, 1807628 (2019).CrossRefGoogle ScholarPubMed
NREL: Best Research-Cell Efficiencies (2019). Available at https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190703.pdf (accessed 12 August 2019).Google Scholar
Rossi, D. et al. On the importance of ferroelectric domains for the performance of perovskite solar cells. Nano Energy 48, 20-26 (2018).CrossRefGoogle Scholar
Liu, Y. et al. Dynamic behavior of CH3NH3PbI3 perovskite twin domains. Applied Physics Letters 113, 072102 (2018).CrossRefGoogle Scholar
Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. The Journal of Physical Chemistry C 120, 5724-5731 (2016).CrossRefGoogle Scholar
Strelcov, E. et al. CH3NH3PbI3 perovskites: Ferroelasticity revealed. Science advances 3, e1602165 (2017).CrossRefGoogle ScholarPubMed
Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH 3 NH 3 PbI 3 perovskite. Nature materials 17, 1013 (2018).CrossRefGoogle Scholar
Liu, Y. et al. Light-Ferroic Interaction in Hybrid Organic Inorganic Perovskites. Advanced Optical Materials, 1901451 (2019).CrossRefGoogle Scholar
Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. The journal of physical chemistry letters 6, 693-699 (2015).CrossRefGoogle ScholarPubMed
Bi, F. et al. Enhanced photovoltaic properties induced by ferroelectric domain structures in organometallic halide perovskites. The Journal of Physical Chemistry C 121, 11151-11158 (2017).CrossRefGoogle Scholar
Pecchia, A., Gentilini, D., Rossi, D., Auf der Maur, M. & Di Carlo, A. Role of ferroelectric nanodomains in the transport properties of perovskite solar cells. Nano letters 16, 988-992 (2016).CrossRefGoogle Scholar
Montero-Alejo, A. L., Menéndez-Proupin, E., Palacios, P., Wahnón, P. & Conesa, J. Ferroelectric Domains May Lead to Two-Dimensional Confinement of Holes, but not of Electrons, in CH3NH3PbI3 Perovskite. The Journal of Physical Chemistry C 121, 26698-26705 (2017).CrossRefGoogle Scholar
Rashkeev, S. N., El-Mellouhi, F., Kais, S. & Alharbi, F. H. Domain walls conductivity in hybrid organometallic perovskites and their essential role in CH 3 NH 3 PbI 3 solar cell high performance. Scientific reports 5, 11467 (2015).CrossRefGoogle Scholar
Morozovska, A. et al. Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect. Physical Review B 83, 195313 (2011).CrossRefGoogle Scholar
Zhang, H. et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nature communications 10, 1088 (2019).CrossRefGoogle ScholarPubMed
Kim, D. et al. Light- and bias-induced structural variations in metal halide perovskites. Nature Communications 10, 444 (2019).CrossRefGoogle ScholarPubMed
Kim, D. et al. Probing Facet Dependent Surface Defects in MAPbI3 Perovskite Single Crystals. The Journal of Physical Chemistry C (2019).Google Scholar
Collins, L. et al. Time resolved surface photovoltage measurements using a big data capture approach to KPFM. Nanotechnology 29, 445703 (2018).CrossRefGoogle ScholarPubMed
Ahmadi, M. et al. Environmental Gating and Galvanic Effects in Single Crystals of Organic–Inorganic Halide Perovskites. ACS applied materials & interfaces 11, 14722-14733 (2019).CrossRefGoogle ScholarPubMed
Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chemical Communications 51, 4180-4183 (2015).CrossRefGoogle ScholarPubMed
Defaÿ, E. Integration of ferroelectric and piezoelectric thin films: concepts and applications for microsystems. (John Wiley & Sons, 2013).Google Scholar
Wadhawan, V. K. Ferroelasticity and related properties of crystals. Phase Transitions: A Multinational Journal 3, 3-103 (1982).CrossRefGoogle Scholar
Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry 52, 9019-9038 (2013).CrossRefGoogle ScholarPubMed
Fang, H. H. et al. Photophysics of organic–inorganic hybrid lead iodide perovskite single crystals. Advanced Functional Materials 25, 2378-2385 (2015).CrossRefGoogle Scholar
Glasser, L. Lattice energies of crystals with multiple ions: a generalized Kapustinskii equation. Inorganic Chemistry 34, 4935-4936 (1995).CrossRefGoogle Scholar
Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Physical review letters 118, 136001 (2017).CrossRefGoogle ScholarPubMed
Leguy, A. M. et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nature communications 6, 7124 (2015).CrossRefGoogle ScholarPubMed
Miyata, K. et al. Large polarons in lead halide perovskites. Science advances 3, e1701217 (2017).CrossRefGoogle ScholarPubMed
Sewvandi, G. A., Kodera, K., Ma, H., Nakanishi, S. & Feng, Q. Antiferroelectric Nature of CH 3 NH 3 PbI 3− x Cl x Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells. Scientific reports 6, 30680 (2016).CrossRefGoogle Scholar
Collins, L., Liu, Y., Ovchinnikova, O. & Proksch, R. Quantitative Electromechanical Atomic Force Microscopy. ACS Nano 13, 8055-8066 (2019).CrossRefGoogle ScholarPubMed
Vorpahl, S. M. et al. Orientation of ferroelectric domains and disappearance upon heating methylammonium lead triiodide perovskite from tetragonal to cubic phase. ACS Applied Energy Materials 1, 1534-1539 (2018).CrossRefGoogle Scholar
Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH 3 NH 3 PbI 3. Nature communications 8, 14547 (2017).CrossRefGoogle Scholar
Röhm, H., Leonhard, T., Hoffmann, M. J. & Colsmann, A. Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy & Environmental Science 10, 950-955 (2017).CrossRefGoogle Scholar
Leonhard, T. et al. Probing the Microstructure of Methylammonium Lead Iodide Perovskite Solar Cells. Energy Technology 7, 1800989 (2019).CrossRefGoogle Scholar
MacDonald, G. A. et al. Determination of the true lateral grain size in organic–inorganic halide perovskite thin films. ACS applied materials & interfaces 9, 33565-33570 (2017).CrossRefGoogle ScholarPubMed
Huang, B. et al. Ferroic domains regulate photocurrent in single-crystalline CH 3 NH 3 PbI 3 films self-grown on FTO/TiO 2 substrate. npj Quantum Materials 3, 30 (2018).CrossRefGoogle Scholar
Arlt, G. Twinning in ferroelectric and ferroelastic ceramics: stress relief. Journal of materials Science 25, 2655-2666 (1990).CrossRefGoogle Scholar
Jesse, S., Baddorf, A. P. & Kalinin, S. V. Dynamic behaviour in piezoresponse force microscopy. Nanotechnology 17, 1615 (2006).CrossRefGoogle ScholarPubMed
Kalinin, S. V., Rar, A. & Jesse, S. A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 53, 2226-2252 (2006).CrossRefGoogle ScholarPubMed
Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Applied Physics Reviews 4, 021302 (2017).CrossRefGoogle Scholar
Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS nano 9, 6484-6492 (2015).CrossRefGoogle ScholarPubMed
Liu, Y. et al. Reply to: On the ferroelectricity of CH3NH3PbI3 perovskites. Nature materials, DOI: 10.1038/s41563-019-0481-6 (2019).Google ScholarPubMed
Kalinin, S. V. & Bonnell, D. A. Effect of phase transition on the surface potential of the BaTiO 3 (100) surface by variable temperature scanning surface potential microscopy. Journal of Applied Physics 87, 3950-3957 (2000).CrossRefGoogle Scholar
Abplanalp, M., Eng, L. & Günter, P. Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Applied Physics A: Materials Science & Processing 66, S231-S234 (1998).CrossRefGoogle Scholar
Liu, Y. et al. Multi-Model Imaging of Local Chemistry and Ferroic Properties of Hybrid Organic-Inorganic Perovskites. Microscopy and Microanalysis 25, 2076-2077 (2019).CrossRefGoogle Scholar
Känzig, W. in Solid State Physics Vol. 4 1-197 (Elsevier, 1957).Google Scholar
Chen, B. et al. Large electrostrictive response in lead halide perovskites. Nature materials 17, 1020-1026 (2018).CrossRefGoogle ScholarPubMed
Kalinin, S. V., Kim, Y., Fong, D. D. & Morozovska, A. N. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Reports on Progress in Physics 81, 036502 (2018).CrossRefGoogle ScholarPubMed
Ahmadi, M. et al. Exploring anomalous polarization dynamics in organometallic halide perovskites. Advanced Materials 30, 1705298 (2018).CrossRefGoogle ScholarPubMed