Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T01:20:20.954Z Has data issue: false hasContentIssue false

Lattice Kerker effect in the array of hexagonal boron nitride antennas

Published online by Cambridge University Press:  26 June 2018

Viktoriia E. Babicheva*
Affiliation:
College of Optical Sciences, University of Arizona, Tucson, AZ, USA
Get access

Abstract

Subwavelength particles with hyperbolic light dispersion in the constituent medium are a promising alternative to plasmonic, high-refractive-index dielectric, and semiconductor structures in the practical realization of nanoscale optical elements. Hexagonal boron nitride (hBN) is a layered van der Waals material with natural hyperbolic properties and low-loss phonon-polaritons at the same time. In this work, we consider multipole excitations and antennas properties of hBN particles with an emphasis on the periodic arrangement and collective array modes. We analyze excitation of lattice resonances in the antenna array and effect of resonance shifts and overlap with other multipoles supported by particles in the lattice. In such periodic structure, a decrease of reflectance from the array is achieved with appropriate lattice spacing (periods) where the electric and magnetic multipoles overlap, and the resonance oscillations are in phase and comparable in magnitude. We theoretical demonstrate that in this case, generalized Kerker condition is satisfied, and hBN antennas in the array efficiently scatter light in the predominantly forward direction resulting in near-zero reflectance. The resonant lattice Kerker effect with hyperbolic-medium antennas can be applied in developing metasurfaces based on hBN resonators for mid-infrared photonics.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caldwell, J. D., Kretinin, A. V., Chen, Y., Giannini, V., Fogler, M. M., Francescato, Y., Ellis, C. T., Tischler, J. G., Woods, C. R., Giles, A. J., Hong, M., Watanabe, K., Taniguchi, T., Maier, S. A., and Novoselov, K. S., Nature Communications 5, Article number: 5221 (2014).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances doi: /10.1557/adv.2018.112 (2018).Google Scholar
Babicheva, V. E., “Multipole resonances and directional scattering by hyperbolic-media antennas,” arxiv.org/abs/1706.07259Google Scholar
Prodan, E., Radloff, C., Halas, N. J., Nordlander, P., Science 302, 419422 (2003).CrossRefGoogle Scholar
Principles of Nano-Optics, Novotny, L., Hecht, B., Cambridge University Press, Cambridge, 2012Google Scholar
Atwater, H. A., Polman, A., Nature Mater. 9, 205213 (2010).CrossRefGoogle Scholar
Babicheva, V. E., Vergeles, S.S., Vorobev, P.E., Burger, S., JOSA B 29, 12631269 (2012).CrossRefGoogle Scholar
Babicheva, V. E., Ikhsanov, R.Sh., Zhukovsky, S.V., Protsenko, I.E., Smetanin, I.V., and Uskov, A.V., ACS Photonics 2, 10391048 (2015).CrossRefGoogle Scholar
Boulesbaa, A., Babicheva, V. E., Wang, K., Kravchenko, I.I., Lin, M.-W., Mahjouri-Samani, M., Jacob, C., Puretzky, A.A., Xiao, K., Ivanov, I., Rouleau, C.M., Geohegan, D.B., ACS Photonics 3, 2389 (2016).CrossRefGoogle Scholar
Babicheva, V. E., Gamage, S., Stockman, M.I., and Abate, Y., Optics Express 25, 2393523944 (2017).CrossRefGoogle Scholar
Babicheva, V. E., “Surface and edge resonances of phonon-polaritons in scattering near-field optical microscopy,” arxiv.org/abs/1709.06274Google Scholar
Ginn, J. C., Brener, I., Peters, D. W., Wendt, J. R., Stevens, J. O., Hines, P. F., Basilio, L. I., Warne, L. K., Ihlefeld, J. F., Clem, P. G., and Sinclair, M. B., Phys. Rev. Lett. 108, 097402 (2012).CrossRefGoogle Scholar
Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., Kivshar, Y. S., Opt. Express 20, 2059920604 (2012).CrossRefGoogle Scholar
Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., and Chichkov, B. N., Nano Lett. 12 (7), 37493755 (2012).CrossRefGoogle Scholar
Zywietz, U., Evlyukhin, A.B., Reinhardt, C., and Chichkov, B. N., Nature Communications 5, Article number: 3402 (2014)CrossRefGoogle Scholar
Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B., Science 354, aag2472 (2016).CrossRefGoogle Scholar
Jahani, S. and Jacob, Z., Nature Nanotechnology 11, 2336 (2016).CrossRefGoogle Scholar
Staude, I. and Schilling, J., Nature Photonics 11, 274284 (2017).CrossRefGoogle Scholar
Baryshnikova, K.V., Petrov, M.I., Babicheva, V. E., Belov, P.A., Scientific Reports 6, 22136 (2016).CrossRefGoogle Scholar
Babicheva, V., Petrov, M., Baryshnikova, K., Belov, P., Journal of the Optical Society of America B 34 (7), D18D28 (2017).CrossRefGoogle Scholar
Kerker, M., Wang, D., Giles, C., J. Opt. Soc. Am. 73, 765 (1983).CrossRefGoogle Scholar
Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F., Luk’yanchuk, B., Nat. Commun. 4, 1527 (2013).CrossRefGoogle Scholar
Person, S., Jain, M., Lapin, Z., Sáenz, J. J., Wicks, G., Novotny, L., Nano Lett. 13 (4), 18061809 (2013).CrossRefGoogle Scholar
Pors, A., Andersen, S. K. H., and Bozhevolnyi, S. I., Opt. Express 23, 2880828828 (2015).CrossRefGoogle Scholar
Alaee, R., Filter, R., Lehr, D., Lederer, F., and Rockstuhl, C., Opt. Lett. 40, 26452648 (2015).CrossRefGoogle Scholar
Babicheva, V. E. and Evlyukhin, A.B., Laser & Photonics Reviews 11, 1700132 (2017).CrossRefGoogle Scholar
Yang, Chi-Yin, Yang, Jhen-Hong, Yang, Zih-Ying, Zhou, Zhong-Xing, Sun, Mao-Guo, Babicheva, V. E., and Chen, Kuo-Ping, ACS Photonics, doi: 10.1021/acsphotonics.7b01186 (2018).Google Scholar
Drachev, V. P., Podolskiy, V. A., and Kildishev, A. V., Opt. Express 21 (12), 1504815064 (2013).CrossRefGoogle Scholar
Poddubny, A., Iorsh, I., Belov, P., and Kivshar, Y., Nat. Photonics 7 (12), 948957 (2013).CrossRefGoogle Scholar
Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I., and Menon, V. M., Science 336 (6078), 205209 (2012).CrossRefGoogle Scholar
Zhukovsky, S.V., Orlov, A.A., Babicheva, V. E., Lavrinenko, A.V., Sipe, J.E., Physical Review A 90, 013801 (2014).CrossRefGoogle Scholar
Simovski, C., Maslovski, S., Nefedov, I., Tretyakov, S., Opt. Express 21, 14988 (2013).CrossRefGoogle Scholar
Orlov, A. A., Krylova, A.K., Zhukovsky, S. V., Babicheva, V. E., Belov, P.A., Phys. Rev. A 90, 013812 (2014).CrossRefGoogle Scholar
Orlov, A.A., Yankovskaya, E.A., Zhukovsky, S.V., Babicheva, V. E., Iorsh, I.V., Belov, P.A., Crystals 4, 417426 (2014).CrossRefGoogle Scholar
Chebykin, A. V., Babicheva, V. E., Iorsh, I.V., Orlov, A.A., Belov, P.A., Zhukovsky, S.V., Physical Review A 93, 033855 (2016).CrossRefGoogle Scholar
Babicheva, V. E., Shalaginov, M. Y., Ishii, S., Boltasseva, A., and Kildishev, A. V., Opt. Express 23 (8), 96819689 (2015).CrossRefGoogle Scholar
Ishii, S., Shalaginov, M. Y., Babicheva, V. E., Boltasseva, A., and Kildishev, A. V., Opt. Lett. 39 (16), 46634666 (2014).CrossRefGoogle Scholar
Babicheva, V. E., Journal of Optics 19, 124013 (2017).CrossRefGoogle Scholar
Babicheva, V. E., Shalaginov, M.Y., Ishii, S., Boltasseva, A., and Kildishev, A.V., Opt. Express 23, 3110931119 (2015).CrossRefGoogle Scholar
Li, P., Dolado, I., Alfaro-Mozaz, F. J., Nikitin, A. Yu., Casanova, F., Hueso, L. E., Vélez, S., and Hillenbrand, R., Nano Lett. 17 (1), 228235 (2017).CrossRefGoogle Scholar
West, P.R., Kinsey, N., Ferrera, M., Kildishev, A.V., Shalaev, V.M., and Boltasseva, A., Nano Lett. 15 (1), 498505 (2015).CrossRefGoogle Scholar
Nikitin, A. Yu., Yoxall, E., Schnell, M., Vélez, S., Dolado, I., Alonso-Gonzalez, P., Casanova, F., Hueso, L. E., and Hillenbrand, R., ACS Photonics 3 (6), 924929 (2016).CrossRefGoogle Scholar
Auguié, B. and Barnes, W.L., Phys. Rev. Lett. 10, 143902 (2008).CrossRefGoogle Scholar
Evlyukhin, A. B., Reinhardt, C., Zywietz, U., Chichkov, B., Phys. Rev. B 85 (24), 245411 (2012).CrossRefGoogle Scholar
Zhukovsky, S. V., Babicheva, V. E., Uskov, A. V., Protsenko, I. E., and Lavrinenko, A. V., Plasmonics 9, 283 (2014).CrossRefGoogle Scholar
Zhukovsky, S. V., Babicheva, V. E., Uskov, A. V., Protsenko, I. E., and Lavrinenko, A. V., Appl. Phys. A 116, 929 (2014).CrossRefGoogle Scholar
Evlyukhin, A. B., Reinhardt, C., Seidel, A., Luk’yanchuk, B. S., Chichkov, B. N., Phys. Rev. B 82 (4), 045404 (2010).CrossRefGoogle Scholar
Babicheva, V. E., Evlyukhin, A. B., ACS Photonics 5, 2022 (2018).CrossRefGoogle Scholar
Cai, Y., Zhang, L., Zeng, Q., Cheng, L., Xu, Y., Solid State Communications 141, 262266 (2007).CrossRefGoogle Scholar
Yang, X., Yao, J., Rho, J., Yin, X., and Zhang, X., Nature Photonics 6, 450454 (2012).CrossRefGoogle Scholar