Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T05:42:38.140Z Has data issue: false hasContentIssue false

Modification and characterization of polysulfone films by ionizing radiation (gamma-rays) with enhanced hydrophilicity

Published online by Cambridge University Press:  05 November 2018

Israel Fredy Sánchez-Salinas
Affiliation:
TeCNM/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México
Javier Illescas*
Affiliation:
TeCNM/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México
Claudia Rosario Muro-Urista
Affiliation:
TeCNM/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México
Guillermina Burillo
Affiliation:
Instituto de Ciencias Nucleares de la Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, 04510, Coyoacán, CDMX
María del Carmen Díaz Nava
Affiliation:
TeCNM/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México
Get access

Abstract

Polysulfone (Pfu) films were modified by grafting poly(vinyl alcohol) (PVA) by the oxidative pre-irradiation technique. To achieve this modification, some parameters were modified such as the radiation dose, the concentration of PVA, the temperature and the reaction time. It was found that the grafted films with 12% presented a greater grafting percentage (0.86%). The modified films were characterized by means of the contact angle, Fourier transform infrared spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM) techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Obaid, M., Barakat, N. A., Fadali, O. A., Al-Meer, S., Elsaid, K., & Khalil, K. A. (2015). Polymer, 72, 125-133.CrossRefGoogle Scholar
Liu, Z., Mi, Z., Chen, C., Zhou, H., Zhao, X., & Wang, D. (2017). Applied Surface Science, 401, 69-78.CrossRefGoogle Scholar
Liu, M., Chen, Q., Wang, L., Yu, S., & Gao, C. (2015). Desalination, 367, 11-20.CrossRefGoogle Scholar
Kang, G.-D., Cao, Y.-M. (2012). Water Research. 46 , 584600.CrossRefGoogle Scholar
Lalia, B.S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). Desalination, 326, 7795.CrossRefGoogle Scholar
Mo, Y., Tiraferri, A., Yip, N. Y., Adout, A., Huang, X., & Elimelech, M. (2012). Environmental Science and Technology, 46, 1325313261.CrossRefGoogle Scholar
Homayoonfal, M., Akbari, A., & Mehrnia, M. R. (2010). Desalination, 263(1-3), 217-225.CrossRefGoogle Scholar
Chaudhri, S. G., Rajai, B. H., & Singh, P. S. (2015). Desalination, 367, 272-284.CrossRefGoogle Scholar
Gong, Y., Liao, X., Xu, J., Chen, D., & Zhang, H. (2016). International Journal of Hydrogen Energy, 41(13), 5816-5823.CrossRefGoogle Scholar
Kim, J. S., Jeon, Y. S., & Rhim, J. W. (2016). Separation and Purification Technology, 157, 45-52.CrossRefGoogle Scholar
Meléndez-Ortiz, H. I., Bucio, E., & Burillo, G. (2009). Radiation Physics and Chemistry, 78(1), 1-7.CrossRefGoogle Scholar
Nava-Ortiz, C. A. B., Burillo, G., Bucio, E., & Alvarez-Lorenzo, C. (2009). Radiation Physics and Chemistry, 78(1), 19-24.CrossRefGoogle Scholar
Wypych, G. (2016). Handbook of polymers. Ed. Elsevier. Canada, pp. 580, 610.CrossRefGoogle Scholar