Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T04:44:00.771Z Has data issue: false hasContentIssue false

Permeation of Water Nanodroplets on Carbon Nanotubes Forests

Published online by Cambridge University Press:  31 January 2017

Ygor M. Jaques*
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
Douglas S. Galvao
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
*
Get access

Abstract

Fully atomistic molecular dynamics simulations were carried out to investigate how a liquid-like water droplet behaves when into contact with a nanopore formed by carbon nanotube arrays. We have considered different tube arrays, varying the spacing between them, as well as, different chemical functionalizations on the uncapped nanotubes. Our results show that simple functionalizations (for instance, hydrogen ones) allow tuning up the wetting surface properties increasing the permeation of liquid inside the nanopore. For functionalizations that increase the surface hydrophilicity, even when the pore size is significantly increased the droplet remains at the surface without tube permeation.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Duta, L., Popescu, A.C., Zgura, I., Preda, N. and Mihailescu, I.N., Wettability of Nanostructured Surfaces, Wetting and Wettability, edited by Dr.Aliofkhazraei, Mahmood (Intech, 2015) p. 207.Google Scholar
Liu, Y., Moevius, L., Xu, X., Qian, T., Yeomans, J. M., and Wang, Z., Nat. Phys. 10, 515 (2014).Google Scholar
Wang, Z., Elimelech, M., and Lin, S., Environ. Sci. Technol. (2016).Google Scholar
Nonomura, Y., Tanaka, T., and Mayama, H., Langmuir 0, null (n.d.).Google Scholar
Zhang, L. and Resasco, D., Langmuir 25(8), 4792 (2009).Google Scholar
Plimpton, S., J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Nosé, S., J. Chem. Phys. 81, 511 (1984).Google Scholar
Hoover, W. G., Phys. Rev. A 31, 1695 (1985).Google Scholar
Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P., J. Phys. Chem. 91, 6269 (1987).Google Scholar
Jaffe, R. L., Gonnet, P., Werder, T., Walther, J. H., and Koumoutsakos, P., Mol. Simul. 30, 205 (2004).Google Scholar
MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M., J. Phys. Chem. B 102, 3586 (1998).Google Scholar
Jaques, Y. M., Brunetto, G. and Galvao, D. S., MRS Adv. 1, 675 (2016).Google Scholar
Jaques, Y. M. and Galvao, D. S., to be published.Google Scholar