Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T19:43:22.792Z Has data issue: false hasContentIssue false

Physico Chemical Characterization of Nanofibrous Poly(Ε-Caprolactone) Electrospun Templates for Cell Adhesion

Published online by Cambridge University Press:  04 September 2017

Karla A. Gaspar-Ovalle*
Affiliation:
Facultad de Estomatología, Universidad Autónoma de San Luis Potosí A. C., Av. Dr. Manuel Nava No. 2, Zona Universitaria, 78290San Luis Potosí, SLP, México.
Juan V. Cauich-Rodriguez
Affiliation:
Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97245. Mérida, Yucatán, México.
Armando Encinas
Affiliation:
División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, 78216San Luis Potosí, SLP, México.
Get access

Abstract

Nanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hutmacher, D., Schantz, T., Zein, I., NG, K., Teoh, S. and Tan, K., J. Biomed. Mater. Res. 2001, 55, 806812.Google Scholar
Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y. and Wang, S., Biomaterials, 2004, 25, 18911900.CrossRefGoogle Scholar
Maria, A., Diertmar, W., J. Polymer Sci. 2010,35, 12171256.Google Scholar
Lee, K., Kim, H., Ra, Y., Lee, D., Polymer 2003, 44, 12871294.Google Scholar
Maria, W., Dietmar, H., Prog. Polym. Sci. 2010, 35, 12171256.Google Scholar
Fong, H., Liu, W., Wang, C., Vaia, R., Polymer 2002; 43, 775–80.Google Scholar
Lim, L., Auras, R., Rubino, M., Progr. Polym Sci. 2008, 33, 820852.Google Scholar