Published online by Cambridge University Press: 27 December 2019
Boron nitride nanotubes (BNNTs) and hexagonal boron nitride platelets (h-BNs) have received considerable attention for aerospace insulation applications due to their exceptional chemical and thermal stability. Presently, making BN nanomaterials compatible with polymer and composite matrices is challenging. Due to their inert and highly stable structure, h-BN and BNNTs are difficult to covalently functionalize. In this work, we present a novel sonochemical technique that enables covalent attachment of fluoroalkoxy substituents to the surface of BN nanomaterials in a controlled and metered process. Covalent functionalization is confirmed via colloidal stability analysis, FT-IR, and x-ray photoelectron spectroscopy (XPS).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.