Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T15:29:55.114Z Has data issue: false hasContentIssue false

Atomic electron tomography in three and four dimensions

Published online by Cambridge University Press:  09 April 2020

Jihan Zhou
Affiliation:
Department of Physics and Astronomy, and California NanoSystems Institute, University of California, Los Angeles, USA; jihan.zhou@physics.ucla.edu
Yongsoo Yang
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Republic of Korea; yongsoo.yang@kaist.ac.kr
Peter Ercius
Affiliation:
National Center for Electron Microscopy, Molecular Foundry Division, Lawrence Berkeley National Laboratory, USA; percius@lbl.gov
Jianwei Miao
Affiliation:
Department of Physics and Astronomy, and California NanoSystems Institute, University of California, Los Angeles, USA; miao@physics.ucla.edu
Get access

Abstract

Atomic electron tomography (AET) has become a powerful tool for atomic-scale structural characterization in three and four dimensions. It provides the ability to correlate structures and properties of materials at the single-atom level. With recent advances in data acquisition methods, iterative three-dimensional (3D) reconstruction algorithms, and post-processing methods, AET can now determine 3D atomic coordinates and chemical species with sub-Angstrom precision, and reveal their atomic-scale time evolution during dynamical processes. Here, we review the recent experimental and algorithmic developments of AET and highlight several groundbreaking experiments, which include pinpointing the 3D atom positions and chemical order/disorder in technologically relevant materials and capturing how atoms rearrange during early nucleation at four-dimensional atomic resolution.

Type
Nanoscale Tomography Using X-rays and Electrons
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., Marković, N.M., Science 315, 493 (2007).CrossRefGoogle Scholar
Ding, Y., Chen, M., MRS Bull . 34, 569 (2009).CrossRefGoogle Scholar
Lim, B., Jiang, M., Camargo, P.H.C., Cho, E.C., Tao, J., Lu, X., Zhu, Y., Xia, Y., Science 324, 1302 (2009).CrossRefGoogle Scholar
Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M., Duan, X., Mueller, T., Huang, Y., Science 348, 1230 (2015).CrossRefGoogle Scholar
Lin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Jiang, Z., Yu, Q., Li, Y.-W., Shi, C., Wen, X.-D., Ma, D., Nature 544, 80 (2017).CrossRefGoogle Scholar
Law, M., Goldberger, J., Yang, P., Annu. Rev. Mater. Res. 34, 83 (2004).CrossRefGoogle Scholar
Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C.M., Nature 449, 885 (2007).CrossRefGoogle Scholar
Dou, L., Wong, A.B., Yu, Y., Lai, M., Kornienko, N., Eaton, S.W., Fu, A., Bischak, C.G., Ma, J., Ding, T., Ginsberg, N.S., Wang, L.-W., Alivisatos, A.P., Yang, P., Science 349, 1518 (2015).CrossRefGoogle Scholar
Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., van Schalkwijk, W., Nat. Mater. 4, 366 (2005).CrossRefGoogle Scholar
Kang, B., Ceder, G., Nature 458, 190 (2009).CrossRefGoogle Scholar
Sun, H., Zhu, J., Baumann, D., Peng, L., Xu, Y., Shakir, I., Huang, Y., Duan, X., Nat. Rev. Mater. 4, 45 (2019).CrossRefGoogle Scholar
Qian, X., Liu, J., Fu, L., Li, J., Science 346, 1344 (2014).CrossRefGoogle Scholar
Liu, P., Williams, J.R., Cha, J.J., Nat. Rev. Mater. 4, 479 (2019).CrossRefGoogle Scholar
Liu, X., Hersam, M.C., Nat. Rev. Mater. 4, 669 (2019).CrossRefGoogle Scholar
Wang, Y., Chen, M., Zhou, F., Ma, E., Nature 419, 912 (2002).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O., Science 345, 1153 (2014).CrossRefGoogle Scholar
Lilleodden, E., Voorhees, P., MRS Bull . 43, 20 (2018).CrossRefGoogle Scholar
Rosi, N.L., Mirkin, C.A., Chem. Rev. 105, 1547 (2005).CrossRefGoogle Scholar
Howes, P.D., Chandrawati, R., Stevens, M.M., Science 346, 1247390 (2014).CrossRefGoogle Scholar
Ding, Y., Jiang, Z., Saha, K., Kim, C.S., Kim, S.T., Landis, R.F., Rotello, V.M., Mol. Ther. 22, 1075 (2014).CrossRefGoogle Scholar
Ladd, M., Palmer, R., Structure Determination by X-Ray Crystallography (Plenum Press, New York, 1994).Google Scholar
Drenth, J., Principles of Protein X-Ray Crystallography (Springer, New York, 1994).CrossRefGoogle Scholar
Miao, J., Charalambous, P., Kirz, J., Sayre, D., Nature 400, 342 (1999).CrossRefGoogle Scholar
Robinson, I., Harder, R., Nat. Mater. 8, 291 (2009).CrossRefGoogle Scholar
Miao, J., Ishikawa, T., Robinson, I.K., Murnane, M.M., Science 348, 530 (2015).CrossRefGoogle Scholar
Cheng, Y., Cell 161, 450 (2015).CrossRefGoogle Scholar
Nogales, E., Nat. Methods 13, 24 (2016).CrossRefGoogle Scholar
Zhang, P., Curr. Opin. Struct. Biol. 58, 249 (2019).CrossRefGoogle Scholar
Kelly, T.F., Miller, M.K., Rev. Sci. Instrum. 78, 031101 (2007).CrossRefGoogle Scholar
Seidman, D., Stiller, K., MRS Bull . 34, 717 (2009).CrossRefGoogle Scholar
de Rosier, D.J., Klug, A., Nature 217, 130 (1968).CrossRefGoogle Scholar
Hart, R.G., Science 159, 1464 (1968).CrossRefGoogle Scholar
Frank, J., Electron Tomography: Methods for Three-DimensionalVisualization of Structures in the Cell (Springer, New York, 2010).Google Scholar
Li, Z.Y., Young, N.P., Di Vece, M., Palomba, S., Palmer, R.E., Bleloch, A.L., Curley, B.C., Johnston, R.L., Jiang, J., Yuan, J., Nature 451, 46 (2008).CrossRefGoogle Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R., Van Tendeloo, G., Nature 470, 374 (2011).CrossRefGoogle Scholar
Goris, B., Bals, S., Van den Broek, W., Carbó-Argibay, E., Gómez-Graña, S., Liz-Marzán, L.M., Van Tendeloo, G., Nat. Mater. 11, 930 (2012).CrossRefGoogle Scholar
Van Dyck, D., Jinschek, J.R., Chen, F.-R., Nature 486, 243 (2012).CrossRefGoogle Scholar
Hwang, J., Zhang, J.Y., D’Alfonso, A.J., Allen, L.J., Stemmer, S., Phys. Rev. Lett. 111, 266101 (2013).CrossRefGoogle Scholar
Azubel, M., Koivisto, J., Malola, S., Bushnell, D., Hura, G.L., Koh, A.L., Tsunoyama, H., Tsukuda, T., Pettersson, M., Häkkinen, H., Kornberg, R.D., Science 345, 909 (2014).CrossRefGoogle Scholar
Jia, C.L., Mi, S.B., Barthel, J., Wang, D.W., Dunin-Borkowski, R.E., Urban, K.W., Thust, A., Nat. Mater. 13, 1044 (2014).CrossRefGoogle Scholar
Scott, M.C., Chen, C.-C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C., Miao, J., Nature 483, 444 (2012).CrossRefGoogle Scholar
Xu, R., Chen, C.-C., Wu, L., Scott, M.C., Theis, W., Ophus, C., Bartels, M., Yang, Y., Ramezani-Dakhel, H., Sawaya, M.R., Heinz, H., Marks, L.D., Ercius, P., Miao, J., Nat. Mater. 14, 1099 (2015).CrossRefGoogle Scholar
Midgley, P.A., Weyland, M., Ultramicroscopy 96, 413 (2003).CrossRefGoogle Scholar
Midgley, P.A., Thomas, J.M., Laffont, L., Weyland, M., Raja, R., Johnson, B.F.G., Khimyak, T., J. Phys. Chem. B 108, 4590 (2004).CrossRefGoogle Scholar
Arslan, I., Yates, T.J.V., Browning, N.D., Midgley, P.A., Science 309, 2195 (2005).CrossRefGoogle Scholar
Ercius, P., Weyland, M., Muller, D.A., Gignac, L.M., Appl. Phys. Lett. 88, 243116 (2006).CrossRefGoogle Scholar
Bals, S., Batenburg, K.J., Verbeeck, J., Sijbers, J., Van Tendeloo, G., Nano Lett . 7, 3669 (2007).CrossRefGoogle Scholar
Ward, E.P.W., Yates, T.J.V., Fernández, J.-J., Vaughan, D.E.W., Midgley, P.A., J. Phys. Chem. C 111, 11501 (2007).CrossRefGoogle Scholar
Yaguchi, T., Konno, M., Kamino, T., Watanabe, M., Ultramicroscopy 108, 1603 (2008).CrossRefGoogle Scholar
Xin, H.L., Ercius, P., Hughes, K.J., Engstrom, J.R., Muller, D.A., Appl. Phys. Lett. 96, 223108 (2010).CrossRefGoogle Scholar
Genc, A., Kovarik, L., Gu, M., Cheng, H., Plachinda, P., Pullan, L., Freitag, B., Wang, C., Ultramicroscopy 131, 24 (2013).CrossRefGoogle Scholar
Zhou, J., Taylor, M., Melinte, G.A., Shahani, A.J., Dharmawardhana, C.C., Heinz, H., Voorhees, P.W., Perepezko, J.H., Bustillo, K., Ercius, P., Miao, J., Sci. Rep. 8, 10239 (2018).CrossRefGoogle Scholar
Miao, J., Ercius, P., Billinge, S.J.L., Science 353, aaf2157 (2016).CrossRefGoogle Scholar
Chen, C.-C., Zhu, C., White, E.R., Chiu, C.-Y., Scott, M.C., Regan, B.C., Marks, L.D., Huang, Y., Miao, J., Nature 496, 74 (2013).CrossRefGoogle Scholar
Yang, Y., Chen, C.-C., Scott, M.C., Ophus, C., Xu, R., Pryor, A., Wu, L., Sun, F., Theis, W., Zhou, J., Eisenbach, M., Kent, P.R.C., Sabirianov, R.F., Zeng, H., Ercius, P., Miao, J., Nature 542, 75 (2017).CrossRefGoogle Scholar
Zhou, J., Yang, Y., Yang, Y., Kim, D.S., Yuan, A., Tian, X., Ophus, C., Sun, F., Schmid, A.K., Nathanson, M., Heinz, H., An, Q., Zeng, H., Ercius, P., Miao, J., Nature 570, 500 (2019).CrossRefGoogle Scholar
Midgley, P.A., Ward, E.P.W., Hungría, A.B., Thomas, J.M., Chem. Soc. Rev. 36, 1477 (2007).CrossRefGoogle Scholar
Midgley, P.A., Dunin-Borkowski, R.E., Nat. Mater. 8, 271 (2009).CrossRefGoogle Scholar
Saghi, Z., Midgley, P.A., Annu. Rev. Mater. Res. 42, 59 (2012).CrossRefGoogle Scholar
Ercius, P., Alaidi, O., Rames, M.J., Ren, G., Adv. Mater. 27, 5638 (2015).CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392, 768 (1998).CrossRefGoogle Scholar
Batson, P.E., Dellby, N., Krivanek, O.L., Nature 418, 617 (2002).CrossRefGoogle Scholar
Pennycook, S.J., Ultramicroscopy 180, 22 (2017).CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Kisielowski, C., Dahmen, U., Phys. Rev. Lett. 102, 096101 (2009).CrossRefGoogle Scholar
Ophus, C., Ciston, J., Nelson, C.T., Ultramicroscopy 162, 1 (2016).CrossRefGoogle Scholar
Larkin, K.G., Oldfield, M.A., Klemm, H., Opt. Commun. 139, 99 (1997).CrossRefGoogle Scholar
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K., IEEE Trans. Image Process. 16, 2080 (2007).CrossRefGoogle Scholar
Crowther, R.A., Amos, L.A., Finch, J.T., De Rosier, D.J., Klug, A., Nature 226, 421 (1970).CrossRefGoogle Scholar
Liu, Y., Penczek, P.A., McEwen, B.F., Frank, J., Ultramicroscopy 58, 393 (1995).CrossRefGoogle Scholar
Egerton, R.F., Li, P., Malac, M., Micron . 35, 399 (2004).CrossRefGoogle Scholar
Frank, J., Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Oxford University Press, New York, 2006).CrossRefGoogle Scholar
Gordon, R., Bender, R., Herman, G.T., J. Theor. Biol. 29, 471 (1970).CrossRefGoogle Scholar
Andersen, A.H., Kak, A.C., Ultrason. Imaging 6, 81 (1984).CrossRefGoogle Scholar
Miao, J., Förster, F., Levi, O., Phys. Rev. B 72, 052103 (2005).CrossRefGoogle Scholar
Pryor, A., Yang, Y., Rana, A., Gallagher-Jones, M., Zhou, J., Lo, Y.H., Melinte, G., Chiu, W., Rodriguez, J.A., Miao, J., Sci. Rep. 7, 10409 (2017).CrossRefGoogle Scholar
Lo, Y.H., Liao, C.-T., Zhou, J., Rana, A., Bevis, C.S., Gui, G., Enders, B., Cannon, K.M., Yu, Y.-S., Celestre, R., Nowrouzi, K., Shapiro, D., Kapteyn, H., Falcone, R., Bennett, C., Murnane, M., Miao, J., Sci. Adv. 5, eaax3009 (2019).CrossRefGoogle Scholar
Haberfehlner, G., Thaler, P., Knez, D., Volk, A., Hofer, F., Ernst, W.E., Kothleitner, G., Nat. Commun. 6, 8779 (2015).CrossRefGoogle Scholar
Park, J., Elmlund, H., Ercius, P., Yuk, J.M., Limmer, D.T., Chen, Q., Kim, K., Han, S.H., Weitz, D.A., Zettl, A., Alivisatos, A.P., Science 349, 290 (2015).CrossRefGoogle Scholar
Yang, H., Rutte, R.N., Jones, L., Simson, M., Sagawa, R., Ryll, H., Huth, M., Pennycook, T.J., Green, M.L.H., Soltau, H., Kondo, Y., Davis, B.G., Nellist, P.D., Nat. Commun. 7, 12532 (2016).CrossRefGoogle Scholar
Gao, S., Wang, P., Zhang, F., Martinez, G.T., Nellist, P.D., Pan, X., Kirkland, A.I., Nat. Commun. 8, 163 (2017).CrossRefGoogle Scholar
Jiang, Y., Chen, Z., Han, Y., Deb, P., Gao, H., Xie, S., Purohit, P., Tate, M.W., Park, J., Gruner, S.M., Elser, V., Muller, D.A., Nature 559, 343 (2018).CrossRefGoogle Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L., Science 319, 1073 (2008).CrossRefGoogle Scholar
Ding, Q., Zhang, Y., Chen, X., Fu, X., Chen, D., Chen, S., Gu, L., Wei, F., Bei, H., Gao, Y., Wen, M., Li, J., Zhang, Z., Zhu, T., Ritchie, R.O., Yu, Q., Nature 574, 223 (2019).CrossRefGoogle Scholar
Yang, H., Jones, L., Ryll, H., Simson, M., Soltau, H., Kondo, Y., Sagawa, R., Banba, H., MacLaren, I., Nellist, P.D., J. Phys. Conf. Ser. 644, 012032 (2015).CrossRefGoogle Scholar
Gao, W., Addiego, C., Wang, H., Yan, X., Hou, Y., Ji, D., Heikes, C., Zhang, Y., Li, L., Huyan, H., Blum, T., Aoki, T., Nie, Y., Schlom, D., Wu, R., Pan, X., Nature 575, 480 (2019).CrossRefGoogle Scholar
Ophus, C., Ciston, J., Pierce, J., Harvey, T.R., Chess, J., McMorran, B.J., Czarnik, C., Rose, H.H., Ercius, P., Nat. Commun. 7, 10719 (2016).CrossRefGoogle Scholar
Zhang, D., Zhu, Y., Liu, L., Ying, X., Hsiung, C.-E., Sougrat, R., Li, K., Han, Y., Science 359, 675 (2018).CrossRefGoogle Scholar
Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A.L., Yu, Y., Perrino, J., Butz, B., Chu, S., Cui, Y., Science 358, 506 (2017).CrossRefGoogle Scholar
Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A., Kourkoutis, L.F., Nature 560, 345 (2018).CrossRefGoogle Scholar
Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., Takeda, S., Science 335, 317 (2012).CrossRefGoogle Scholar
Liao, H.-G., Cui, L., Whitelam, S., Zheng, H., Science 336, 1011 (2012).CrossRefGoogle Scholar
Tian, X., Kim, D.S., Yang, S., Ciccarino, C.J., Gong, Y., Yang, Yo., Yang, Ya., Duschatko, B., Yuan, Y., Ajayan, P.M., Idrobo, J.C., Narang, P., Miao, J., Nat. Mater., https://doi.org/10.1038/s41563-020-0636-5 (2020).Google Scholar
Ren, D., Ophus, C., Chen, M., Waller, L., Ultramicroscopy 208, 112860 (2020).CrossRefGoogle Scholar