Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:08:40.306Z Has data issue: false hasContentIssue false

Harnessing machine learning potentials to understand the functional properties of phase-change materials

Published online by Cambridge University Press:  05 September 2019

G.C. Sosso
Affiliation:
Department of Chemistry and Centre for Scientific Computing, University of Warwick, UK; g.sosso@warwick.ac.uk
M. Bernasconi
Affiliation:
Department of Materials Science, University of Milano-Bicocca, Italy; marco.bernasconi@unimib.it
Get access

Abstract

The exploitation of phase-change materials (PCMs) in diverse technological applications can be greatly aided by a better understanding of the microscopic origins of their functional properties. Over the last decade, simulations based on electronic-structure calculations within density functional theory (DFT) have provided useful insights into the properties of PCMs. However, large simulation cells and long simulation times beyond the reach of DFT simulations are needed to address several key issues of relevance for the performance of devices. One way to overcome the limitations of DFT methods is to use machine learning (ML) techniques to build interatomic potentials for fast molecular dynamics simulations that still retain a quasi-ab initio accuracy. Here, we review the insights gained on the functional properties of the prototypical PCM GeTe by harnessing such interatomic potentials. Applications and future challenges of the ML techniques in the study of PCMs are also outlined.

Type
Phase-Change Materials in Electronics and Photonics
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pirovano, A., Lacaita, A.L., Benvenuti, A., Pellizzer, F., Bez, R., IEEE Trans. Electron Devices 51, 452 (2004).CrossRefGoogle Scholar
Lacaita, A.L., Redaelli, A., Microelectron. Eng. 109, 351 (2013).CrossRefGoogle Scholar
Wuttig, M., Yamada, N., Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
Lencer, D., Salinga, M., Wuttig, M., Adv. Mater. 23, 2030 (2011).CrossRefGoogle Scholar
Kim, W., BrightSky, M., Masuda, T., Sosa, N., Kim, S., Bruce, R., Carta, F., Fraczak, G., Cheng, H.-Y., Ray, A., Zhu, Y., Lung, H.L., Suu, K., Lam, C., Proc. 2016 IEEE Int. Electron Devices Mtg. (IEDM), (IEEE, 2016), pp. 8386.Google Scholar
Kim, S., Kim, W., Nam, S.-W., MRS Bull . 44 (9), 710 (2019).Google Scholar
Rao, F., Ding, K., Zhou, Y., Zheng, Y., Xia, M., Lv, S., Song, Z., Feng, S., Ronneberger, I., Mazzarello, R., Zhang, W., Ma, E., Science 358, 1423 (2017).CrossRefGoogle Scholar
Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M., Narayanan, P., Fumarola, A., Sanches, L.L., Boybat, I., Le Gallo, M., Moon, K., Woo, J., Hwang, H., Leblebici, Y., Adv. Phys. X 2, 89 (2016).Google Scholar
Wuttig, M., Bhaskaran, H., Taubner, T., Nat. Photonics 11, 465 (2017).CrossRefGoogle Scholar
Caravati, S., Bernasconi, M., Kühne, T.D., Krack, M., Parrinello, M., Appl. Phys. Lett. 91, 171906 (2007).CrossRefGoogle Scholar
Hegedüs, J., Elliott, S.R., Nat. Mater. 7, 399 (2008).CrossRefGoogle Scholar
Akola, J., Jones, R.O., Phys. Rev. B 76, 235201 (2007).CrossRefGoogle Scholar
Zhang, W., Deringer, V.L., Dronskowski, R., Mazzarello, R., Ma, E., Wuttig, M., MRS Bull. 40, 856 (2015).CrossRefGoogle Scholar
Zipoli, F., Curioni, A., New J. Phys. 15, 123006 (2013).CrossRefGoogle Scholar
Deringer, V.L., Dronskowski, R., Wuttig, M., Adv. Funct. Mater. 25, 6343 (2015).CrossRefGoogle Scholar
Behler, J., J. Chem. Phys. 145, 170901 (2016).CrossRefGoogle ScholarPubMed
Bartók, A.P., De, S., Poelking, C., Bernstein, N., Kermode, J.R., Csányi, G., Ceriotti, M., Sci. Adv. 3, e1701816 (2017).CrossRefGoogle Scholar
Jordan, M.I., Mitchell, T.M., Science 349, 255 (2015).CrossRefGoogle Scholar
Bartók, A.P., Csányi, G., Int. J. Quantum Chem. 115, 1051 (2015).CrossRefGoogle Scholar
Behler, J., Parrinello, M., Phys. Rev. Lett. 98, 146401 (2007).CrossRefGoogle Scholar
Behler, J., Angew. Chem. Int. Engl. 56, 12828 (2017).CrossRefGoogle Scholar
Sosso, G.C., Miceli, G., Caravati, S., Behler, J., Bernasconi, M., Phys. Rev. B 85, 174103 (2012).CrossRefGoogle Scholar
Gabardi, S., Baldi, E., Bosoni, E., Campi, D., Caravati, S., Sosso, G.C., Behler, J., Bernasconi, M., J. Phys. Chem. C 121, 23827 (2017).CrossRefGoogle Scholar
Sosso, G.C., Donadio, D., Caravati, S., Behler, J., Bernasconi, M., Phys. Rev. B 86, 104301 (2012).CrossRefGoogle Scholar
Campi, D., Donadio, D., Sosso, G.C., Behler, J., Bernasconi, M., J. Appl. Phys. 117, 015304 (2015).CrossRefGoogle Scholar
Sosso, G.C., Deringer, V.L., Elliott, S.R., Csányi, G., Mol. Simul. 44, 866 (2018).CrossRefGoogle Scholar
Weber, H., Orava, J., Kaban, I., Pries, J., Greer, A.L., Phys. Rev. Mater. 2, 093405 (2018).CrossRefGoogle Scholar
Sosso, G.C., Behler, J., Bernasconi, M., Phys. Status Solidi B 249, 1880 (2012).CrossRefGoogle Scholar
Sosso, G.C., Colombo, J., Behler, J., Del Gado, E., Bernasconi, M., J. Phys. Chem. B 118, 13621 (2014).CrossRefGoogle Scholar
Gabardi, S., Caravati, S., Sosso, G.C., Behler, J., Bernasconi, M., Phys. Rev. B 92, 054201 (2015).CrossRefGoogle Scholar
Raty, J.-Y., Phys. Status Solidi Rapid Res. Lett. 13, 1800590 (2019).CrossRefGoogle Scholar
Sosso, G.C., Chen, J., Cox, S.J., Fitzner, M., Pedevilla, P., Zen, A., Michaelides, A., Chem. Rev. 116, 7078 (2016).CrossRefGoogle Scholar
Zhang, W., Mazzarello, R., Wuttig, M., Ma, E., Nat. Rev. Mater. 4 , 150 (2019).CrossRefGoogle Scholar
Sosso, G.C., Miceli, G., Caravati, S., Giberti, F., Behler, J., Bernasconi, M., J. Phys. Chem. Lett. 4, 4241 (2013).CrossRefGoogle Scholar
Gabardi, S., Sosso, G.C., Behler, J., Bernasconi, M., Faraday Discuss . 213, 287 (2019).CrossRefGoogle Scholar
Sosso, G.C., Salvalaglio, M., Behler, J., Bernasconi, M., Parrinello, M., J. Phys. Chem. C 119, 6428 (2015).CrossRefGoogle Scholar
Mocanu, F.C., Csányi, G., Elliott, S.R., J. Phys. Chem. B 122, 8998 (2018).CrossRefGoogle Scholar
Chan, H., Narayanan, B., Cherukara, M.J., Sen, F.G., Sasikumar, K., Gray, S.K., Chan, M.K.Y., Sankaranarayanan, S.K.R.S., J. Phys. Chem. C 123, 6941 (2019).CrossRefGoogle Scholar
Zhang, L., Lin, D.-Y., Wang, H., Car, R., , W.E., Phys. Rev. Mater. 3, 023804 (2019).CrossRefGoogle Scholar
Hajinazar, S., Shao, J., Kolmogorov, A.N., Phys. Rev. B 95, 014114 (2017).CrossRefGoogle Scholar
Onat, B., Cubuk, E.D., Malone, B.D., Kaxiras, E., Phys. Rev. B 97, 094106 (2018).CrossRefGoogle Scholar
Kobayashi, R., Giofré, D., Junge, T., Ceriotti, M., Curtin, W.A., Phys. Rev. Mater. 1, 053604 (2017).CrossRefGoogle Scholar
Palumbo, E., Zuliani, P., Borghi, M., Annunziata, R., Solid State Electron . 133, 38 (2017).CrossRefGoogle Scholar
Simpson, R.E., Fons, P., Kolobov, A.V., Fukaya, T., Krbal, M., Yagi, T., Tominaga, J., Nat. Nanotechnol. 6, 501 (2011).CrossRefGoogle Scholar
Boniardi, M., Boschker, J.E., Momand, J., Kooi, B.J., Redaelli, A., Calarco, R., Phys. Status Solidi Rapid Res. Lett. 13, 1800634 (2019).CrossRefGoogle Scholar
Salinga, M., Kersting, B., Ronneberger, I., Jonnalagadda, V.P., Vu, X.T., Le Gallo, M., Giannopoulos, I., Cojocaru-Mirédin, O., Mazzarello, R., Sebastian, A., Nat. Mater. 17, 681 (2018).CrossRefGoogle Scholar
Wynn, J.M., Medeiros, P.V.C., Vasylenko, A., Sloan, J., Quigley, D., Morris, A.J., Phys. Rev. Mater. 1, 073001 (2017).CrossRefGoogle Scholar
Chen, B., ten Brink, G.H., Palasantzas, G., Kooi, B.J., Sci. Rep. 6, 39546 (2016).CrossRefGoogle Scholar
Cassar, D.R., de Carvalho, A.C.P.L.F., Zanotto, E.D., Acta Mater . 159, 249 (2018).CrossRefGoogle Scholar
Dreyfus, C., Dreyfus, G.A., J. Non Cryst. Solids 318, 63 (2003).CrossRefGoogle Scholar
Krishnan, N.M.A., Mangalathu, S., Smedskjaer, M.M., Tandia, A., Burton, H., Bauchy, M., J. Non Cryst. Solids 487, 37 (2018).CrossRefGoogle Scholar
Ward, L., O’Keeffe, S.C., Stevick, J., Jelbert, G.R., Aykol, M., Wolverton, C., Acta Mater. 159, 102 (2018).CrossRefGoogle Scholar
Onbaşlı, M.C., Tandia, A., Mauro, J.C., “Mechanical and Compositional Design of High-Strength Corning Gorilla Glass,” in Handbook of Materials Modeling, Andreoni, W., Yip, S., Eds. (Springer, Dordrecht, The Netherlands, 2018).Google Scholar