Hostname: page-component-599cfd5f84-9hh9z Total loading time: 0 Render date: 2025-01-07T05:52:32.740Z Has data issue: false hasContentIssue false

In Situ High-Resolution Transmission Electron Microscopy in the Study of Nanomaterials and Properties

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article introduces the use of in situ high-resolution transmission electron microscopy (HRTEM) techniques for the study and development of nanomaterials and their properties. Specifically, it shows how in situ HRTEM (and TEM) can be used to understand diverse phenomena at the nanoscale, such as the behavior of alloy phase formation in isolated nanometer-sized particles, the mechanical and transport properties of carbon nanotubes and nanowires, and the dynamic behavior of interphase boundaries at the atomic level. Current limitations and future potential advances in in situ HRTEM of nanomaterials are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lee, J.-G., Mori, H., Yasuda, H., J. Mater. Res. 20, 1708 (2005).CrossRefGoogle Scholar
2.Lee, J.-G., Mori, H., Yasuda, H., Phys. Rev. B 65, 132106 (2002).CrossRefGoogle Scholar
3.Massalski, T.B., Binary Alloy Phase Diagrams (ASM, Ohio, 1986).Google Scholar
4.Lee, J.-G., Mori, H., Philos. Mag. 84, 2675 (2004).CrossRefGoogle Scholar
5.Lee, J.-G., Mori, H., Proc. Materials Processing and Manufacturing Division Fifth Global Symposium, Mukhopadhyay, S.M. et al., Eds., 3 (TMS, Warrendale, 2004).Google Scholar
6.Lee, J.-G., Mori, H., Phys. Rev. Lett. 93, 235501 (2004).CrossRefGoogle Scholar
7.Poncharal, H.P., Wang, Z.L., Ugarte, D., de Heer, W.A., Science 283, 1513 (1999).CrossRefGoogle Scholar
8.Wang, H.Z.L., Poncharal, P., De Heer, W.A., Pure Appl. Chem. 72, 209 (2000).CrossRefGoogle Scholar
9.Chen, H.C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J., Phys. Rev. Lett. 96, 075505 (2006).CrossRefGoogle Scholar
10.Han, H.X.D., Zhang, Y.F., Zheng, K., Zhang, Z., Wang, Z.L., Nano Lett. 7, 452 (2007).CrossRefGoogle Scholar
11.Han, H.X.D., Zheng, K., Zhang, Y.F., Zhang, Z., Wang, Z.L., Adv. Mater. 19, 2112 (2007).CrossRefGoogle Scholar
12.Poncharal, H.P., Berger, C., Yi, Y., Wang, Z.L., de Heer, W.A., J. Phys. Chem., 106, 12104 (2002).CrossRefGoogle Scholar
13.Golberg, H.D., Costa, P.M.F.J., Lourie, O., Mitome, M., Bai, X.D., Bando, Y., et al., Nano Lett. 7, 2146 (2007).CrossRefGoogle Scholar
14.Bai, X.D., Golberg, D., Bando, Y., Zhi, C.Y., Tang, C.C., Mitome, M., Kurashima, K., Nano Lett. 7, 632 (2007).CrossRefGoogle Scholar
15.Huang, J.Y., Chen, S., Jo, S.H., Wang, Z., Han, D.X., Chen, G., Dresselhaus, M.S., Ren, Z.F., Phys. Rev. Lett. 94, 236802 (2005).CrossRefGoogle Scholar
16.Huang, J.Y., Chen, S., Wang, Z.Q., Kempa, K., Ren, Z.F., et al., Nature 439, 281 (2006).CrossRefGoogle Scholar
17.Cumming, H.J., Zettl, A., McCartney, M.R., Spence, J.C.H., Phys. Rev. Lett. 88, 56804–1 (2002).CrossRefGoogle Scholar
18.Wang, Z.L., Gao, R.P., de Heer, W.A., Poncharal, P., Appl. Phys. Lett. 80, 856 (2002).CrossRefGoogle Scholar
19.Wei, W., Liu, Y., Wei, Y., Jiang, K.L., Peng, L.M., Fan, S.S., Nano Lett. 7, 64 (2007).CrossRefGoogle Scholar
20.Gao, R.P., Pan, Z.W., Wang, Z.L., Appl. Phys. Lett. 78, 1757 (2001).CrossRefGoogle Scholar
21.Xu, Z., Bai, X.D., Wang, E.G., Wang, Z.L., Appl. Phys. Lett. 87, 163106 (2005).CrossRefGoogle Scholar
22.Xu, Z., Bai, X.D., Wang, E.G., Wang, Z.L., J. Phys.: Condens. Matter 17, L507 (2005).Google Scholar
23.Wayman, J.C.M., Aaronson, H.I., Hirth, J.P., Rath, B.B., Eds., Metall. Mater. Trans. A 25A, 1781 (1994).Google Scholar
24.Aaronson, H.I., Metall. Mater. Trans. A 48A, 2285 (2002).CrossRefGoogle Scholar
25.Martin, J.W., Doherty, R.D., Cantor, B., Stability of Microstructure in Metallic Systems, 2nd Ed. (Cambridge University Press, Cambridge, 1997).CrossRefGoogle Scholar
26.Howe, J.M., Gautam, A.R.S., Chatterjee, K., Phillipp, F., Acta Mater. 55, 2159 (2007).CrossRefGoogle Scholar
27.Schweika, W., Reichert, H., Babik, W., Klein, O., Engemann, S., Phys. Rev. B 70, 041401R (2004).CrossRefGoogle Scholar
28.Butrymowicz, D.B., Manning, J.R., Read, M.E., J. Phys. Chem. Ref. Data 3, 527 (1974).CrossRefGoogle Scholar
29.Howe, J.M., Benson, W.E., Interface Sci. 2, 347 (1995).CrossRefGoogle Scholar
30.Sinclair, R., Morgiel, J., Kirtikar, A.S., Wu, I.-W., Chiang, A., Ultramicroscopy 51, 41 (1993).CrossRefGoogle Scholar
31.Kikuchi, R., Cahn, J.W., Acta Metall. 27, 1337 (1979).CrossRefGoogle Scholar
32.Sluiter, M., Kawazoe, Y., Phys. Rev. B 54, 10381 (1996).CrossRefGoogle Scholar
33.Asta, M., Hoyt, J.J., Acta Mater. 48, 1089 (2000).CrossRefGoogle Scholar